Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по электротехнике и электронике

Cмотрите так же...
Шпаргалки по электротехнике и электронике
Закон Ома для замкнутой цепи и для участка цепи
Законы Кирхгофа для цепи постоянного тока
Расчет простых цепей при различных схемах соединения потребителей
Понятие о сложной электрической цепи
Мощность, работа и потери КПД электрических цепей
Синусоидальный ток и его основные параметры
Способы представления синусоидального тока
Резисторное сопротивление в цепи синусоидального тока
Конденсатор в цепи синусоидального тока
Индуктивность в электрической цепи
Закон электромагнитной индукции
Индуктивность в цепи синусоидального тока
Взаимоиндуктивность в магнитосвязанных цепях
Законы Кирхгофа для цепей синусоидального тока
Закон Ома и сопротивления цепи синусоидального тока с последовательным соединением элементов R, L,C
Понятие о резонансе напряжений
Резонанс напряжений и его признаки
Закон Ома и проводимость цепи синусоидального тока с параллельным соединением ветвей R-L, L-C
Понятие о резонанс токов
Мгновенная мощь цепи синусоидального тока
Активная, реактивная и полная мощность цепей синусоидального тока
Коэффициент мощности и его экономическое значение
Получение трехфазной системы ЭДС и способы представления
Соединения обмоток трехфазных генераторов
Соединения приемников в трехфазных цепях
Мощность трехфазных цепей
Трансформаторы
Работа трансформаторов в различных режимах
Потери и КПД трансформаторов
Устройство, схемы и группы соединения обмоток трехфазных трансформаторов
Назначение, схема и работа автотрансформатора
Назначение, схема и работа импульсного трансформатора
Машины постоянного тока
Асинхронные электродвигатели
Синхронные электродвигатели
Пускорегулирующая аппаратура
Выбор типа и мощности электродвигателя
Провода и кабели, выбор сечения проводов
Защитное заземление
Электронно-дырочный переход
Диоды, тиристоры
Транзисторы
Основные логические операции и их реализация
Триггеры
Однофазные неуправляемые выпрямители
Трехфазные выпрямители: нулевой, мостовой
Фильтры(C, L, LC, RC), коэффициент пульсаций
Однофазные и трехфазные управляемые выпрямители
All Pages

Электротехника и электроника

Линейные электрические цепи постоянного тока

  Электрическая цепь и ее основные элементы

Электрическая цепь - совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятии об электродвижущей силе, токе и напряжении.

Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя. Т.е. электрическая цепь - совокупность соединенных между собой источников электрической энергии, приемников и соединяющих их проводов (линия передачи).

clip_image002

Основные элементы цепи. Все электроприемники характеризуются электрическими параметрами, среди которых основные - напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение.

Элементы электрической цепи делятся на активные и пассивные. К активным элементам электрической цепи относятся те, в которых индуцируется ЭДС (источники ЭДС, электродвигатели, аккумуляторы в процессе зарядки и т. п.). К пассивным элементам относятся электроприемники и соединительные провода.

Элементы электрической цепи, обладающие электрическим сопротивлением и называемые резисторами, характеризуются так называемой вольт-амперной характеристикой - зависимостью напряжения на зажимах элемента от тока в нем или зависимостью тока в элементе от напряжения на его зажимах.

Если сопротивление элемента постоянно при любом значении тока в нем и любом значении приложенного к нему напряжения, то вольт-амперная характеристика прямая линия и такой элемент называется линейным элементом.

В общем случае сопротивление зависит как от тока, так и от напряжения. Одна из причин этого состоит в изменении сопротивления проводника при протекании по нему тока из-за его нагрева. При повышении температуры сопротивление проводника увеличивается. Но так как во многих случаях эта зависимость незначительна, элемент считают линейным.

Электрическая цепь, электрическое сопротивление участков которой не зависит от значений и направлений токов и напряжений в цепи, называется линейной электрической цепью. Такая цепь состоит только из линейных элементов, а ее состояние описывается линейными алгебраическими уравнениями.

Если сопротивление элемента цепи существенно зависит от тока или напряжения, то вольт-амперная характеристика носит нелинейный характер, а такой элемент называется нелинейным элементом.

Электрическая цепь, электрическое сопротивление хотя бы одного из участков которой зависит от значений или от направлений токов и напряжений в этом участке цепи, называется нелинейной электрической цепью. Такая цепь содержит хотя бы один нелинейный элемент.

 


Закон Ома для замкнутой цепи и для участка цепи

Сила тока прямо пропорциональна разности потенциалов (напряжению) на концах участка цепи и обратно пропорциональна сопротивлению этого участка:

I = U/R  - Закон Ома для замкнутой цепи,

Где I - Сила тока в цепи. Измеряется в Амперах

U – напряжение на данном участке цепи

R – сопротивление данного участка цепи

Закон ома для замкнутой цепи говорит о том что: величина тока в замкнутой цепи, которая состоит из источника тока обладающего внутренним сопротивлением, а также внешним нагрузочным сопротивлением, будет равна отношению электродвижущей силы источника к сумме внешнего и внутреннего сопротивлений.

E Электродвижущая сила источника тока измеряется в Вольтахclip_image004

где R Сопротивление внешней цепи измеряется в Омах

r внутреннее сопротивление источника тока также измеряется в Омах.

 


Законы Кирхгофа для цепи постоянного тока

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

clip_image006,

 

где m – число ветвей подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус».

clip_image008

Например, для узла а (см. рис. выше) I−I1−I2=0.

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках.

clip_image009

где n – число источников ЭДС в контуре;

m – число элементов с сопротивлением Rk в контуре;

Uk=RkIk – напряжение или падение напряжения на k-м элементе контура.

Для схемы (рис. выше) запишем уравнение по второму закону Кирхгофа:  E=UR+U1.

Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контру, включая источники ЭДС равна нулю.   clip_image011

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.

Запишем уравнения по II закону Кирхгофа для контуров электрической схемы (рис. выше):

контур I: E=RI+R1I1+r0I,

контур II: R1I1+R2I2=0,

контур III: E=RI+R2I2+r0I.

В действующей цепи электрическая энергия источника питания преобразуется в другие виды энергии. На участке цепи с сопротивлением R в течение времени t при токе I расходуется электрическая энергия

W=I2Rt.                                                                                              (1)

Скорость преобразования электрической энергии в другие виды представляет электрическую мощность P=W/t=I2R=UI.

Из закона сохранения энергии следует, что мощность источников питания в любой момент времени равна сумме мощностей, расходуемой на всех участках цепи.

clip_image013

Это соотношение (1) называют уравнением баланса мощностей. При составлении уравнения баланса мощностей следует учесть, что если действительные направления ЭДС и тока источника совпадают, то источник ЭДС работает в режиме источника питания, и произведение EI подставляют в (1) со знаком плюс. Если не совпадают, то источник ЭДС работает в режиме потребителя электрической энергии, и произведение EI подставляют в (1) со знаком минус. Для цепи, показанной на рис. выше в этой теме уравнение баланса мощностей запишется в виде: EI=I2(r0+R)+I12R1+I22R2.

При расчете электрических цепей используются определенные единицы измерения. Электрический ток измеряется в амперах (А), напряжение – в вольтах (В), сопротивление – в омах (Ом), мощность – в ваттах (Вт), электрическая энергия – ватт-час (Вт-час) и проводимость – в сименсах (См).

Кроме основных единиц используют более мелкие и более крупные единицы измерения: миллиампер (1 мA = 10–3 А), килоампер (1 кA = 103 А), милливольт (1 мВ = 10–3 В), киловольт (1 кВ = 103 В), килоом (1 кОм = 103 Ом), мегаом (1 МОм = 106 Ом), киловатт (1 кВт = 103 Вт), киловатт-час (1 кВт-час = 103 ватт-час).

 


Расчет простых цепей при различных схемах соединения потребителей

В электротехнике рассматривается устройство и принцип действия основных электротехнических устройств, используемых в быту и промышленности. Чтобы электротехническое устройство работало, должна быть создана электрическая цепь, задача которой передать электрическую энергию этому устройству и обеспечить ему требуемый режим работы.

Электрической цепью называется совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электрическом токе, ЭДС (электродвижущая сила) и электрическом напряжении.

Для анализа и расчета электрическая цепь графически представляется в виде электрической схемы, содержащей условные обозначения ее элементов и способы их соединения. Электрическая схема простейшей электрической цепи, обеспечивающей работу осветительной аппаратуры, представлена на рис. 1.1:

clip_image015

Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы:

1) Источники электрической энергии (питания).

Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства).

2) Потребители электрической энергии.

Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (например, нагревательный прибор). Иногда потребители называют нагрузкой. Бывает последовательное соединение и параллельное.

Последовательное соединение (в) — это такое соединение, при котором все потребители включены один за другим в одну линию. Поэтому по всем потребителям проходит ток одинаковой силы.

В нашем примере I = U/R = 12 В / З Ом = 4 А

Общее сопротивление внешней цепи равно сумме сопротивлений всех включенных потребителей.

В нашем примере R = R1 + R2 = 1 Ом + 2 Ом = 3 Ом

При параллельном соединении (г) к одной точке цепи подключают по одному выводу каждого потребителя, а к другой точке цепи другие выводы. В нашем примере внешняя цепь имеет два разветвления, т. е. две параллельные ветви. Оба потребителя R1 и R2 находятся под одинаковым напряжением U = 12 В. Сила тока в цепи каждого потребителя зависит от величины его сопротивления.

В цепи первого потребителя I1 = U/R1 = 12 В / 1 Ом = 12 А

В цепи второго потребителя I2 = U/R2 = 12 В / 2 Ом = 6 А

Общая сила тока во внешней цепи равна сумме сил токов в цепях всех параллельно включенных потребителей:

I = I1 +I2 = 12+6 = 18 А

Сопротивление внешней цепи всегда будет меньше сопротивления каждого потребителя. На автомобиле все потребители электрической энергии включены параллельно друг другу.

3) Вспомогательные элементы цепи: соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых реальная цепь не работает.

Все элементы цепи охвачены одним электромагнитным процессом.

В электрической схеме на рис. 1.1 электрическая энергия от источника ЭДС E, обладающего внутренним сопротивлением r0, с помощью вспомогательных элементов цепи передаются через регулировочный реостат R к потребителям (нагрузке): электрическим лампочкам EL1 и EL2.

 


Понятие о сложной электрической цепи. Методы расчета сложных электрических цепей: -законы Кирхгофа; -метод контурных токов; -метод узловых потенциалов; -метод наложения.

К сложным электрическим цепям относят цепи, содержащие несколько источников электрической энергии, включенных в разные ветви. Ниже на рис. изображены примеры таких цепей.

Для сложных электрических цепей неприменима методика расчета простых электрических цепей. Упрощение схем невозможно, т.к. нельзя выделить на схеме участок цепи с последовательным или параллельным соединением однотипных элементов. Иногда, преобразование схемы с ее последующим расчетом все-таки возможно, но это скорее исключение из общего правила.

Для полного расчета сложных электрических цепей обычно используют следующее методы:

1.     Применение законов Кирхгофа (универсальный метод, сложные расчеты системы линейных уравнений).

Порядок расчета цепей, связанный с использованием законов Кирхгофа следующий:

1)    Выбирают положительные направления токов в ветвях электрической цепи.

2)    Составляют (k-1) независимых уравнений по первому закону Кирхгофа. Уравнения составленные по первому закону Кирхгофа гораздо проще уравнений, составленных по второму закону Кирхгофа. Поэтому их составляют максимально возможное количество.

3)    Выбирают (l-k+1-m) независимых контуров электрической цепи. Контуры необходимо выбирать так, чтобы в них вошли все ветви схемы. Контуры взаимно независимы, если каждый последующий выбираемый контур содержит не менее одной новой ветви.

4)    Для каждого из выбранных независимых контуров выбирают направления обхода и составляют уравнение по второму закону Кирхгофа.

5)    clip_image017Решают систему из (l-m) линейных уравнений любым удобным способом.


2.     Метод контурных токов (универсальный метод)

Расчет сложных электрических цепей методом контурных токов производят в следующей последовательности:

1)    Вычерчиваем принципиальную схему и все ее элементы.

2)    На схеме выбирают и обозначают контурные токи, таким образом, чтобы по любой ветви проходил хотя бы один выбранный контурный ток (исключая ветви с идеальними источниками тока). Контуры можно выбирать произвольно, лишь бы их число было равно (l-k+1-m), и чтобы каждый новый контур содержал хотя бы одну ветвь, не входящую в предыдущие.

3)    Произвольно задаемся направлением протекания контурных токов в каждом из независимых контуров (по часовой стрелке или против). Обозначаем эти токи. Для нумерации контурных токов используют сдвоенные арабские цифры (или римские).

4)    Произвольно задаемся направлением реальных токов всех ветвей и обозначаем их. Маркировать реальные токи надо таким образом, чтобы не путать с контурными. Для нумерации реальных токов ветвей можно использовать одиночные арабские цифры.

5)    По второму закону Кирхгофа, относительно контурных токов, составляем уравнения для всех независимых контуров. Уравнения составлят в следующем виде:

clip_image019

6)    Решаем любым методом полученную систему относительно контурных токов и определяем их.

7)    Переходим от контурных токов к реальным, считая, что реальный ток ветви равен алгебраической сумме контурных токов, протекающих по данной ветви. При алгебраическом суммировании без изменения знака берется контурный ток, направление которого совпадает с принятым направлением реального тока ветви. В противном случае контурный ток умножается на минус единицу.

3.     Метод узловых напряжений (универсальный метод)

Метод узловы́х потенциалов — метод расчета электрических цепей путём записи системы линейных алгебраических уравнений, в которой неизвестными являются потенциалы в узлах цепи. В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, токи во всех ветвях.

Узловыми напряжениями называют напряжения между каждым из (k-1) узлов и одним произвольно выбранным опорным узлом. Потенциал опорного узла принимается равным нулю. На схеме такой узел обычно отображают как заземленный.

Сущность метода заключается в том, что вначале решением системы уравнений определяют потенциалы всех узлов схемы по отношению к опорному узлу. Далее находят токи всех ветвей схемы с помощью закона Ома.

Расчет сложных электрических цепей методом узловых напряжений производят в следующей последовательности:

1)    Вычерчиваем принципиальную схему и все ее элементы.

2)    На схеме произвольно выбирают и обозначают опорный узел. В качестве опорного желательно выбирать узел, в котором сходится максимальное количество ветвей.

3)    Произвольно задаемся направлением токов всех ветвей и обозначаем их на схеме.

4)    Для определения потенциалов остальных (k-1) узлов по отношению к опорному узлу составляем следующую систему уравнений:

clip_image021

5)                Решаем любым методом полученную систему относительно узловых напряжений и определяем их.

6)                Далее для каждой ветви в отдельности применяем закон Ома и находим все токи в электрической цепи.

clip_image023

4.     Принцип наложения (универальный метод, несложные расчеты).

Метод наложения — метод расчёта электрических цепей, основанный на предположении, что ток в каждой из ветвей сложной электрической цепи при всех включённых источниках электрической энергии, равен алгебраической сумме токов в этой же ветви, полученных при включении каждого из генераторов по очереди и отключении остальных генераторов.

Ток в любой ветви можно рассчитать как алгебраическую сумму токов, вызываемых в ней каждым источником электрической энергии в отдельности. При этом следует иметь ввиду, что когда ведут расчет токов, вызванных одним из источников электрической энергии, то остальные источники ЭДС в схеме замещают короткозамкнутыми участками, а источники тока разомкнутыми участками.

Данный метод позволяет существенно упростить расчеты сложных электрических цепей, содержащих небольшое количество источников электрической энергии.

Расчет сложных электрических цепей методом наложения производят в следующей последовательности:

1)    Вычерчиваем принципиальную схему и все ее элементы.

2)    Произвольно задаемся направлением токов всех ветвей и обозначаем их.

3)    Определяем количество источников электрической энергии на схеме.

4)    Для каждого источника электрической энергии вычерчиваем отдельную дополнительную схему, на которой выбранный источник отображаем без изменений (по сравнению с исходной схемой),а остальные источники замещаем (источники ЭДС на короткозамкнутый участок, источник тока на разомкнутый участок электрической цепи).

5)    Для каждой из вновь вычерченной схемы обозначаем токи ветвей таким образом, чтобы не путать их с реальными токами ветвей исходной схемы (например если на исходной схеме ток ветви обозначен как I1, то на дополнительных схемах обозначаем его I1', I1'', I1''' и т.д.).

6)    Рассчитываем каждую дополнительную схему в отдельности по методике расчета простых электрических цепей.

7)    Определяем токи ветвей исходной схемы путем алгебраического суммирования токов ветвей всех дополнительных схем. Если направление тока на дополнительной схеме совпадает с направлением, указанным на основной схеме, ему присваивают знак "+", в противном случае присваивают знак "-".

 

5.     Метод эквивалентного источника (удобен когда необходимо произвести не полный расчет электрической цепи, а найти ток в одной из ветвей).

Метод эквивалентного источника позволяет произвести частичный анализ электрической цепи. Например, определить ток в какой-либо одной ветви электрической цепи или исследовать поведение этой ветви при изменении ее сопротивления. Применение данного метода может оказаться полезным как при частичном расчете сложных электрических цепей, так и простых.

Метод эквивалентного источника применяют в следующей последовательности:

1)    Вычерчиваем принципиальную схему и все ее элементы.

2)    Заданную условием задачи схему разбивают на две части: ветвь (или участок электрической цепи) в которой требуется найти значение тока и остальную часть схемы.

3)    Производят замену активного двухполюсника на эквивалентный источник напряжения или тока.

4)    Находят значение тока в заданной ветви, применив одно из следующих соотношений:clip_image025

6.     Метод эквивалентного преобразования схемы (применим довольно редко, простые расчеты).

Метод эквивалентного преобразования схемы используют при расчете простых электрических цепей. В отдельных случаях имеется возможность применить его и для расчета сложных электрических цепей.

Суть метода эквивалентного преобразования схемы заключается в упрощении схемы, когда два (или несколько) однотипных элемента электрической цепи замещаются одним эквивалентным элементом того же типа. Под термином "эквивалентный элемент" подразумевается такой элемент, замещение на который не меняет значений токов и напряжений в остальной части электрической цепи.

 


Мощность, работа и потери КПД электрических цепей

Мощность - физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Мощность электрического тока (P) – характеристика скорости передачи (преобразования) энергии. Измеряется в ваттах (Вт).

Основные формулы вычисления мощности:P=UI=U2/R=I2∙R.

При различных значениях напряжения и величине заряда, выполняется различная работа, следовательно, необходимо оценить величину скорости передачи (преобразования) энергии. Эта величина называется электрической мощностью и характеризует выполненную работу за единицу времени: P=A/∆t.

Работа электрического тока (A) – произведение мощности на время:A=P∙∆t

измеряется в джоулях (Дж).

Мгновенная мощность зависит от выбранного момента времени; мгновенное значение тока и напряжения также изменяются во времени из-за внешних факторов: изменения температуры, влияния внешнего поля, нестабильности ЭДС источника питания и т.д.

Работа электрического тока при переносе одного заряда численно равна значению напряжения на участке AB, тогда: P=U/∆t

Умножив значение мощности для одного заряда на число перенесённых зарядов, получим значение мощности электрического тока: P=U/∆tq.

 

Учитывая, что отношение величины заряда ко времени равно величине протекающего тока, получим: P=UI=[1B]∙[1B]=[1Вт].

Величина электрической мощности измеряется в ваттах (Вт) или в вольт-амперах (ВА), однако, эти величины не являются тождественными.

 Тогда работа тока равна мощности, умноженной на время:

clip_image027

Для характеристики эффективности системы (устройства, машины, электрической цепи) в отношении преобразования или передачи энергии вводится коэффициент полезного действия (КПД). Он определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой, обозначается обычно η («эта»). КПД является безразмерной величиной и часто измеряется в процентах. Математически определение КПД может быть записано в виде:

clip_image029

где A – работа, выполненная потребителем,

Q – энергия, отданная источником.

В силу закона сохранения энергии КПД всегда меньше единицы или равен ей, то есть невозможно получить полезной работы больше, чем затрачено энергии.

КПД характеризует степень полезности системы и определяется количество потерь мощности в ней.

Потери мощности в проводнике образуются преобразованием электрического тока в тепловую энергию, зависят от сопротивления проводника и не входят в величину полезной работы.

Разность ∆Q=A-Q называется потерями мощности. Из формулы  видно, что потери мощности будут возрастать при увеличении сопротивления проводника, поэтому чтобы получить как можно больше теплового излучения в лампах используется тонкая бифилярная (двойная) спираль, сопротивление которой довольно велико. Нить имеет толщину порядка 50 микрон, чтобы компенсировать относительно малое удельное сопротивление металла. Стоит отметить, что КПД ламп накаливания составляет не более 15%, то есть более 85% мощности рассеивается в виде тепла (инфракрасное излучение).

 

  


  Синусоидальный ток и его основные параметры

Синусоидальный ток представляет собой функцию времени. То есть в отличие от постоянного тока его значение меняется с течением времени. Основными характеристиками синусоидального тока являются. Амплитуда частота и начальная фаза.

  Частота f это количество колебаний в единицу времени. За единицу времени в системе СИ принимается одна секунда. Таким образом, количество колебаний за секунду это и есть частота синусоидального тока. И измеряется она в Герцах. Величина обратная частоте называется периодом колебания T=1/f (с). Определение периода звучит так период это время полного колебания. Если представить себе маятник часов, то период это время за которое он совершит движение из одного крайнего положения в другое и обратно.

Амплитуда синусоидального тока - это максимальное значение тока, которое он достигает за период колебания. Опять же, если рассматривать на примере маятника, то амплитуда это расстояние от положения равновесия до одного из крайних положений.

 Начальная фаза синусоидального тока - это то время, на которое отстает либо опережает синусоида начальный момент времени. Представим две синусоиды одна, из которых начинается условно в нуле а другая в 1. То можно сказать, что вторая синусоида отстаёт по фазе от первой. Если обе синусоиды начинаются в одной точке то можно сказать что они синфазные, то есть имеют одну фазу. При этом они обе могут отставать от начального момента времени на одну и ту же величину, то есть иметь одинаковую начальную фазу.

clip_image031

Математически синусоидальный ток описывается уравнением:

i=Im*sin(wt+j) ,

 где i - мгновенное значение тока это величина тока в определенный момент времени с учетом частоты и начальной фазы тока.

Im   - амплитуда тока.

j- начальная фаза. 

w     - угловая частота выражается как угловая частота -  clip_image032

Синусоидальный ток характеризуется амплитудой Im и периодом T.

Энергетические характеристики синусоидальных сигналов обычно описываются действующими значениями тока I, равными среднеквадратичному за период значению:

clip_image034

Аналогично вводятся действующие значения напряжения U и напряжения ЭДС E. Действующие значения наиболее часто используют для характеристики интенсивности синусоидальных сигналов: электроизмерительные приборы проградуированы так, что они показывают действующие значения синусоидальных токов и напряжений. Для синусоидальных величин вычисление интеграла в последнем выражении приводит к соотношениям: clip_image036

 


Способы представления синусоидального тока

В современной технике широко используют разнообразные по форме переменные токи и напряжения: синусоидальные, прямоугольные, треугольные и др. Значение тока, напряжения, ЭДС в любой момент времени t называется мгновенным значением и обозначается малыми строчными буквами, соответственно: i = i(t); u = u(t); e = e(t).

Токи, напряжения и ЭДС, мгновенные значения которых повторяются через равные промежутки времени, называют периодическими, а наименьший промежуток времени, через который эти повторения происходят, называют периодом Т.

Если кривая изменения периодического тока описывается синусоидой, то ток называют синусоидальным. Если кривая отличается от синусоиды, то ток несинусоидальный.

В промышленных масштабах электрическая энергия производится, передается и расходуется потребителями в виде синусоидальных токов, напряжений и ЭДС,

При расчете и анализе электрических цепей применяют несколько способов представления синусоидальных электрических величин.

1.     Аналитический способ

Для тока: i(t) = Im sint + ψi), для напряжения: u(t) = Um sin (ωt +ψu), для ЭДС: e(t) = Em sin (ωt +ψe),

Im, Um, Em – амплитуды тока, напряжения, ЭДС;

значение в скобках – фаза (полная фаза);

 ψi, ψu, ψe – начальная фаза тока, напряжения, ЭДС;

ω – циклическая частота, ω = 2πf;

f – частота, f = 1 / T; Т – период.

Величины i, Im – измеряются в амперах, величины U, Um, e, Em – в вольтах; величина Т (период) измеряется в секундах (с); частота f – в герцах (Гц), циклическая частота ω имеет размерность рад/с. Значения начальных фаз ψi, ψu, ψe могут измеряться в радианах или градусах. Величина ψi, ψu, ψe зависит от начала отсчета времени t = 0. Положительное значение откладывается влево, отрицательное – вправо.

2.Временная диаграмма

Временная диаграмма представляет графическое изображение синусоидальной величины в заданном масштабе в зависимости от времени i(t) = Im sin(ωt - ψi).

clip_image038

3.Графоаналитический способ

Графически синусоидальные величины изображаются в виде вращающегося вектора (рис. 2.2). Предполагается вращение против часовой стрелки с частотой вращения ω. Величина вектора в заданном масштабе представляет амплитудное значение. Проекция на вертикальную ось есть мгновенное значение величины.

Совокупность векторов, изображающих синусоидальные величины (ток, напряжение, ЭДС) одной и той же частоты называют векторной диаграммой.

Векторные величины отмечаются точкой над соответствующими переменными.

Использование векторных диаграмм позволяет существенно упросить анализ цепей переменного тока, сделать его простым и наглядным.

В основе графоаналитического способа анализа цепей переменного тока лежит построение векторных диаграмм.

 

clip_image040

 

 

 

 

Рис.2.2.

i1(t) = Im1 sin(ωt)→ i2(t) = Im2 sin(ωt + ψ2) →i(t) = ?

Первый закон Кирхгофа выполняется для мгновенных значений токов:

i(t) = i1(t) + i2(t) = Im1 sin(ωt) + Im2 sin(ωt - ψ2) = Im sin(ωt + ψ).

clip_image042

Приравниваем проекции на вертикальную и горизонтальные оси

Im sin ψ = Im2 sin ψ2;  Im cos ψ = Im2 cos ψ2 + Im1;

clip_image044

Из равенств получаемclip_image046

4.Аналитический метод с использованием комплексных чисел

Синусоидальный ток i(t) = Im sin(ωt + ψ) можно представить комплексным числом Ím на комплексной плоскости Ím = Imejψ,

где амплитуда тока Im – модуль, а угол ψ, являющийся начальной фазой, – аргумент комплексного тока.

clip_image048

Использование комплексной формы представления позволяет заменить геометрические операции над векторами алгебраическими операциями над комплексными числами. В результате этого к анализу цепей переменного тока могут быть применены все методы анализа цепей постоянного тока.  

 


Резисторное сопротивление в цепи синусоидального тока

Резистор — пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току, то есть для идеального резистора в любой момент времени должен выполняться закон Ома для участка цепи: мгновенное значение напряжения на резисторе пропорционально току проходящему через него U(t)=RI(t). На практике же резисторы в той или иной степени обладают также паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Сопротивление металлических и проволочных резисторов немного зависит от температуры. При этом зависимость от температуры практически линейная R=R0(1+α(t-t0)), так как коэффициенты 2 и 4 порядка достаточно малы и при обычных измерениях ими можно пренебречь. Коэффициент  α называют температурным коэффициентом сопротивления. Такая зависимость сопротивления от температуры позволяет использовать резисторы в качестве термометров. Сопротивление полупроводниковых резисторов может зависеть от температуры сильнее, возможно, даже экспоненциально по закону Аррениуса, однако в практическом диапазоне температур и эту экспоненциальную зависимость можно заменить линейной.

 Если напряжение clip_image049 подключить к сопротивлению R, то через него протекает ток clip_image050(6.7)

Анализ выражения (6.7) показывает, что напряжение на сопротивлении и ток, протекающий через него, совпадают по фазе.

Формула (6.7) в комплексной форме записи имеет вид clip_image051 (6.8)

где  clip_image052    и  clip_image053   - комплексные  амплитуды  тока и напряжения.

      Комплексному уравнению (6.8) соответствует векторная диаграмма (рис. 6.4).clip_image055

Из анализа диаграммы следует, что векторы напряжения и тока совпадают по направлению.

Сопротивление участка цепи постоянному току называется омическим, а сопротивление того же участка переменному току - активным сопротивлением.

      Рис. 6.4 - Активное сопротивление больше омического из-за явления поверхностного эффекта. Поверхностный эффект заключается в том, что ток вытесняется из центральных частей к периферии сечения проводника.

 


Конденсатор в цепи синусоидального тока

Конденсатор – элемент электрической цепи, предназначенный для использования его ёмкости. В конденсаторе накапливается энергия электрического поля. Свойство элемента запасать электрический заряд характеризует ёмкость. Этот параметр является коэффициентом пропорциональности между зарядом q и прикладываемым напряжением u.

q = C·u, где q – выражается в кулонах [Кл], С – в фарадах [Ф], u – в вольтах [B].

При изменении напряжения на конденсаторе изменяется заряд и возникает электрический ток  clip_image057

Идеализированный конденсатор обладает только параметром С.

Рассмотрим электрические процессы в цепи с идеальным ёмкостным элементом, рис. 3.6, а.

Пусть напряжение источника изменяется по закону u = Um·sinω·t, (ψu = 0).

В цепи возникает ток clip_image059

Из полученного выражения видно, что начальная фаза тока ψi = π/2. Угол сдвига фаз между напряжением и током составляет

φ = ψuψi = 0 – π/2 = - π/2.

Рис 3.6 – Схема замещения цепи с емкостным элементом (а), временная (б) и векторная (в) диаграммы clip_image061

Следовательно, синусоида напряжения на емкости отстаёт от синусоиды тока на угол π/2, рис. 3.6, б, в. На практике, если в электрической цепи напряжение отстаёт по фазе от тока, говорят об ёмкостном характере нагрузки.

Амплитуда тока

Im = ω·C·Um,

действующее значение clip_image063

Это выражение представляет закон Ома. Величину 1/ω·C называют ёмкостным сопротивлением конденсатора и измеряют в [Ом] Xc=1/ ω•C =1/2πfC.

Ёмкостное сопротивление имеет место только в том случае, когда происходит изменение напряжения на обкладках конденсатора. При постоянном напряжении (f = 0) ёмкостное сопротивление равно бесконечности (т. е. В цепи будет разрыв).

Мгновенная мощность ёмкостного элемент p=ui=UmImsin ω tsin(ω t+π/2)= UIsin2 ω t.

Амплитуда мгновенной мощности равна реактивной мощности

QC = U·I = XC·I2.

Активная мощность (средняя за период) равна нулю, рис. 3.6, б.

С энергетической точки зрения график мгновенной мощности отражает накопление энергии в электрическом поле конденсатора (когда мощность положительная) и возврат её источнику питания (когда мощность отрицательная). Следовательно, ёмкостной элемент является реактивной нагрузкой.

Выразим электрические величины в комплексной форме. Напряжение и ток (действующие значения) в цепи имеют вид

U = U·ej·ψu, I = I·ej·ψi , ψu = 0, ψi = π/2, φ = - π/2.

Комплексное сопротивление цепи clip_image065

 Ёмкостное сопротивление является отрицательным мнимым числом.

 


Индуктивность в электрической цепи

Индуктивность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.

Формула для индуктивности  Ф=LI

Где Ф-магнитный поток, L- ток в контуре, I- индуктивность. Измеряется в генри(Гн).

Практически участки цепи со значительной индуктивностью выполняют в виде катушек индуктивности. Элементами малой индуктивности (применяемыми для больших рабочих частот) могут быть одиночные (в том числе и неполные) витки или даже прямые проводники; при высоких рабочих частотах необходимо учитывать индуктивность всех проводников.

Для имитации индуктивности, т.е. ЭДС на элементе, пропорциональной и противоположной по знаку скорости изменения тока через этот элемент, в электронике используются и устройства, не основанные на электромагнитной индукции; такому элементу можно приписать определенную эффективную индуктивность, используемую в расчетах полностью (хотя вообще говоря с определенными ограничивающими условиями) аналогично тому, как используется обычная индуктивность.

 


Закон электромагнитной индукции

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Согласно закону электромагнитной индукции Фарадея (в СИ):

clip_image066

Экспериментальное исследование зависимости ЭДС индукции от изменения магнитного потока привело к установлению закона электромагнитной индукции: ЭДС индукции в замкнутом контуре пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.

    В СИ единица магнитного потока выбрана такой, чтобы коэффициент пропорциональности между ЭДС индукции и изменением магнитного потока был равен единице. При этом закон электромагнитной индукции формулируется следующим образом: ЭДС индукции в замкнутом контуре равна модулю скорости изменения магнитного потока через поверхность, ограниченную контуром: clip_image067

С учетом правила Ленца закон электромагнитной индукции записывается следующим образом: clip_image068

ЭДС индукции в катушке. Если в последовательно соединенных контурах происходят одинаковые изменения магнитного потока, то ЭДС индукции в них равна сумме ЭДС индукции в каждом из контуров. Поэтому при изменении магнитного потока в катушке, состоящей из n одинаковых витков провода, общая ЭДС индукции в n раз больше ЭДС индукции в одиночном контуре: clip_image069

Единица магнитного потока. Единица магнитного потока в Международной системе единиц называется вебером (Вб). Она определяется на основании использования закона электромагнитной индукции. Магнитный поток через площадь, ограниченную замкнутым контуром, равен 1 Вб, если при равномерном убывании этого потока до нуля за 1 с в контуре возникает ЭДС индукции 1 В: clip_image070, clip_image071

Для однородного магнитного поля на основании уравнения Ф=BScosα следует, что его магнитная индукция равна 1 Тл, если магнитный поток через контур площадью 1 м2 равен 1 Вб: В=A/S 1Тл=1Вб/1м2=1Вб∙м2, где B=A/S.

Закон электромагнитной индукции clip_image073по известной скорости изменения магнитного потока позволяет найти значение ЭДС индукции в контуре и при известном значении электрического сопротивления контура вычислить силу тока в контуре.

 


Индуктивность в цепи синусоидального тока

Индуктивность – величина, характеризующая магн. св-ва электрич. цепи. Ток, текущий в проводящем контуре, создаёт в окружающем пр-ве магн. поле, причём магнитный поток Ф, пронизывающий контур (сцепленный с ним), прямо пропорционален току I:Ф=LI. Коэфф. пропорциональности L наз. И. или коэфф. самоиндукции контура. И. зависит от размеров и формы контура, а также от магнитной проницаемости окружающей среды. В СИ И. измеряется в генри, в Гаусса системе единиц она имеет размерность дл

(DI изменение тока за время Dt). И. определяет энергию W магн. поля тока I: W =LI2/2.

Если провести аналогию между электрич. и механич. явлениями, то магн. энергию следует сопоставить с кинетич. энергией тела T=mv2/2 (m — масса тела, v — его скорость), при этом И. будет играть роль массы, а ток — скорости. Т. о., И. определяет инерц. св-ва тока.

Для увеличения И. применяют катушки индуктивности с железными сердечниками; в результате зависимости магн. проницаемости m ферромагнетиков от напряжённости магн. поля (а следовательно, и от тока) И. таких катушек зависит от I. И. длинного соленоида из N витков с площадью поперечного сечения S и длиной l в среде с магн. проницаемостью m равна (в ед. СИ):L=mm0N2S/l,где m0— магн. проницаемость вакуума.

 


Взаимоиндуктивность в магнитосвязанных цепях

Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, "натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.

Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.

Если магнитное поле, создаваемое одной из катушек, пересекает плоскость витков (сцеплено с витками) второй катушки, то такие катушки принято называть магнитносвязанными (индуктивносвязанными).

Изменение тока в электрической цепи приводит к соответствующему изменению магнитного потока, который, в свою очередь, приводит к появлению ЭДС самоиндукции, обусловленной скоростью изменения потокоцепления y = WФ = Li.

При рассмотрении цепей синусоидальных токов мы познакомились с явлением самоиндукции, то есть возникновением ЭДС в электрической цепи при изменении собственного магнитного потока, обусловленного изменением тока в этой цепи:

Однако, кроме явления самоиндукции в электрических цепях синусоидального тока, возможно возникновение взаимной индукции. Физически это можно объяснить так: изменение тока в одной цепи вызывает изменение величины потокосцепления взаимной индукции в другой и наоборот. В данном случае говорят, что эти цепи индуктивно связаны.

Для выяснения явлений в индуктивно связанных цепях рассмотрим две катушки. Пусть, например, в катушке 1 протекает ток i1, а во второй - ток отсутствует. Тогда i1 вызывает магнитный поток Ф11, который пронизывает все витки первой катушки и вызывает ЭДС самоиндукции. Поскольку, катушки находятся достаточно близко друг от друга, то часть силовых линий Ф11 пронизывает витки второй катушки, где Ф21 — это часть Ф11, пронизывающая катушку 2.

Ф11 > Ф21;

y11 = W1 Ф11 — потокосцепление первой катушки;

y21 = W2 Ф21 — потокосцепление второй катушки.

Поделим оба выражения на i1.

Аналогичная картина могла бы иметь место при протекании тока во второй катушке:

Однако, поскольку магнитные свойства среды, заполняющей катушки (воздух) неизменны, то M12 = M21 = M — взаимная индуктивность двух катушек (индуктивная связь) — величина неизменная и зависит только от взаимного положения катушек и чисел витков катушек.

 


Законы Кирхгофа для цепей синусоидального тока

1)                В любой момент времени алгебраическая сумма токов в узле электрической цепи равна нулю: clip_image075.2.8

2)                В любой момент времени в замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме напряжений на всех остальных элементах контура: clip_image077.2.9

Токи, напряжения и ЭДС, входящие в уравнения (2.8) и (2.9), есть синусоидальные функции времени, которые мы рассматриваем как проекции некоторых векторов на оси координат. Так как сложению проекций соответствует сложение векторов и соответствующих им комплексных чисел, то справедливыми будут следующие уравнения, которые можно записывать как для действующих, так и для амплитудных значений.

clip_image079

  Из сказанного вытекают три возможных подхода к расчету цепей синусоидального тока: выполнение операций непосредственно над синусоидальными функциями времени по уравнениям выше; применение метода векторных диаграмм, использование в расчетах комплексных чисел и уравнений, являющихся основой символического метода.

 


Закон Ома и сопротивления цепи синусоидального тока с последовательным соединением элементов R, L,C.

В электрической цепи элементы R, L, C соединены последовательно и подключены к источнику синусоидального напряжения. Ток в такой цепи будет изменяться также по синусоидальному закону.

clip_image081

 

 

 

 Все законы постоянного тока справедливы и для синусоидального, только записанные в комплексной форме.

 Вектор напряжения на входе равен сумме векторов напряжений на элементах R, L, C:clip_image083

 По закону Ома можно расписать:

clip_image085 clip_image087

          Значит полное сопротивление для цепи

clip_image089

clip_image091

где clip_image093 - реактивное сопротивление электрической цепи.

 Можно рассмотреть три случая значений:

1)    x›0, значит xL‹xc;

2)    x‹0, значит xL›xc;

3)    x=0, значит xL=xc.

 


Понятие о резонансе напряжений. Условия его возникновения и способы осуществления

Резонанс напряжений - резонанс, происходящий в последовательном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.

Резонанс напряжений наблюдается в последовательных цепях. Обычно режим резонанса напряжений рассматривается для последовательной RLC-цепи.

Поэтому резонанс напряжений в цепа с последовательным соединением R, L и С может наступить:

1)   если   при   постоянной   индуктивности   емкость   меняется   и становится равной C=1/w2L.

2)   если   при   постоянной  емкости  меняется   индуктивность  и становится равной L=1/w2C.

3) если изменение   обеих величин L и С приводит к равенству wL=1/wC.

4) если, наконец, угловая частота сети, изменяясь, становится равной w=1/clip_image095

учитывая, что w= 2πf, получаем следующее выражение для частоты f0: f0=1/2πclip_image095[1]. Эту частоту принято называть  резонансной.

 


Резонанс напряжений и его признаки

Режим работы RLC цепи или LC-цепи, при условии равенства реактивных сопротивлений XC = XL, когда общее напряжение цепи совпадает по фазе с её током, называется резонансом напряжения.

XC = XL – условие резонанса.

clip_image097

Признаки резонанса напряжения:

Напряжение на входе совпадает по фазе с током, т.е. сдвиг фаз между I и U φ = 0, cos φ = 1

Ток в цепи будет наибольшим и как следствие Pmax = I2maxR тоже максимальна, а реактивная мощность равна нулю.

Резонансная частота wрез=1/clip_image095[2]

clip_image099

Резонанс можно достигнуть, изменяя L, C или ω.

Векторные диаграммы при резонансе напряженийclip_image101

 


Закон Ома и проводимость цепи синусоидального тока с параллельным соединением ветвей R-L, L-C.

   

Если к зажимам электрической цепи, состоящей из параллельно соединенных элементов R, L, С (рисунок 2.18), приложено гармоническое напряжение u = Umcosωt, то гармонический ток, проходящий через эту цепь, равен алгебраической сумме гармонических токов в параллельных ветвях (первый закон Кирхгофа): i = iR + iL + iC.

clip_image103

 


Понятие о резонанс токов. Условия его возникновения и способы осуществления

Резонанс токов — резонанс, происходящий в параллельном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.

Условие резонанса токов: clip_image105, clip_image107.

В1 – реактивная проводимость первой ветви,

В2 – реактивная проводимость второй ветви.

Способ возбуждения колебаний в электрическом контуре, заключающийся в генерации колебаний, за счет регулирования сигнала, управляющего возбуждением колебаний.

 

 

Резонанс токов и его признаки

Режим, при котором в цепи, содержащей параллельные ветви с индуктивными и емкостными элементами, ток неразветвленного участка цепи совпадает по фазе с напряжением (φ=0), называют резонансом токов.

Признаки резонанса токов:

Реактивные составляющие токов ветвей равны IPC = IPL и находятся в противофазе в случае, когда напряжение на входе чисто активное;

 Токи ветвей превышают общий ток цепи, который имеет минимальное значение и совпадают по фазе.

clip_image109 clip_image111

 

 


Мгновенная мощь цепи синусоидального тока

Мгновенной мощностью называют произведение мгновенного напряжения на входе цепи на мгновенный ток.

      Пусть мгновенные напряжение и ток определяются по формулам:

clip_image112  clip_image113

Тогда clip_image114

  Среднее значение мгновенной мощности за периодclip_image116

 

   Из треугольника сопротивлений clip_image117  , aclip_image119

Получим еще одну формулу: clip_image121

Среднее арифметическое значение мощности за период называют активной мощностью и обозначают буквой P.

    Эта мощность измеряется в ваттах и характеризует необратимое преобразование электрической энергии в другой вид энергии, например, в тепловую, световую и механическую энергию.

      Возьмем реактивный элемент (индуктивность или емкость). Активная мощность в этом элементе clip_image122, так как напряжение и ток в индуктивности или емкости различаются по фазе на 90o. В реактивных элементах отсутствуют необратимые потери электрической энергии, не происходит нагрева элементов.

    Происходит обратимый  процесс в  виде обмена электрической энергией между источником и приемником. Для качественной оценки интенсивности обмена энергией вводится понятие реактивной мощности Q.

Преобразуем выражение (6.23):clip_image124

где  clip_image126 - мгновенная мощность в активном сопротивлении;

clip_image127 - мгновенная мощность в реактивном элементе (в индуктивности или в емкости).

    Максимальное или амплитудное значение мощности p2 называется реактивной мощностьюclip_image129    clip_image131

где x - реактивное сопротивление (индуктивное или емкостное).

      Реактивная мощность, измеряемая в вольтамперах реактивных, расходуется на создание магнитного поля в индуктивности или электрического поля в емкости. Энергия, накопленная в емкости или в индуктивности, периодически возвращается источнику питания.

      Амплитудное значение суммарной мощности p = p1 + p2 называется полной мощностью.

    Полная  мощность,  измеряемая в вольтамперах, равна произведению действующих значений напряжения и тока:

clip_image133    clip_image135

где z - полное сопротивление цепи.

    Полная мощность характеризует предельные возможности источника энергии. В электрической цепи можно использовать часть полной мощности

clip_image137

где  clip_image139  - коэффициент мощности или "косинус "фи".

Коэффициент  мощности  является одной из важнейших характеристик электротехнических устройств. Принимают специальные меры к увеличению коэффициента мощности.

 

 


Активная, реактивная и полная мощность цепей синусоидального тока

Активная мощность.

Единица измерения — ватт (W, Вт).

Среднее за период T значение мгновенной мощности называется активной мощностью: clip_image141 В цепях однофазного синусоидального тока clip_image143 где U и I — среднеквадратичные значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P=I2r=U2g. В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением clip_image145

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.

Реактивная мощность.

Единица измерения — вольт-ампер реактивный (var, вар).

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: clip_image147 (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: clip_image149.

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.

Полная мощность.

Единица полной электрической мощности — вольт-ампер (V·A, В·А)

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I; связана с активной и реактивной мощностями соотношением: S=clip_image151, где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой: clip_image153

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

 


Коэффициент мощности  и его экономическое значение

Коэффициент мощности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазепеременный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига.

Можно показать, что если источник синусоидального тока (например, розетка ~220 В, 50 Гц) нагрузить на нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку со сдвинутыми напряжением и током от электростанции требуется больше энергии; избыток передаваемой энергии выделяется в виде тепла в проводах и может быть довольно значительным.

Равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. Полная мощность — геометрическая сумма активной и реактивной мощностей (в случае синусоидальных тока и напряжения). В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощностей. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

 

 


Получение трехфазной системы ЭДС и способы представления

Трехфазной системой электрических цепей называется система, состоящая из трех электрических цепей переменного тока одной частоты, ЭДС которых сдвинуты по фазе друг относительно друга на 1/3 периода.

Принцип получения трехфазной ЭДС может быть проиллюстрирован с помощью следующей простейшей модели: берутся три прямоугольные рамки, повернутые друг относительно друга на углы в 1200 и жестко скрепленные между собой. Эти рамки приводятся во вращение с угловой частотой w в магнитном поле с постоянной индукцией В.

При этом в каждой из трех рамок будет наводиться переменная ЭДС. Пусть, например, в рамке А наводится ЭДС, которая изменяется по закону:

eА = emsinwt.

Но в рамке В тоже будет наводиться ЭДС, изменяющаяся также по синусоидальному закону; однако все процессы в рамке В будут запаздывать по отношению к процессам рамки А на угол в 1200. Если в рамке А в некотором ее пространственном положении ЭДС принимает максимальное значение, то в рамке В в этот момент времени ЭДС не будет максимальна, а станет максимальной только тогда, когда рамка В займет то же положение, что и рамка А, т.е. когда повернется на угол 1200. В рамке В закон изменения ЭДС имеет вид: eВ = emsin(wt – 1200). Аналогичным образом для рамки С: eС = emsin(wt – 2400) = emsin(wt + 1200).

Трехфазная симметричная система ЭДС может изображаться графиками, тригонометрическими функциями, векторами и функциями комплексного переменного.

 


Соединения обмоток трехфазных генераторов. Схема и основные соотношения

Трехфазный генератор представляет собой синхронную машину двух типов: турбогенератор и гидрогенератор. Модель трехфазного генератора схематически изображена на рис.1

clip_image155

На статоре 1 генератора размещается обмотка 2, состоящая из трех частей или, как их принято называть, фаз. Обмотки фаз располагаются на статоре таким образом, чтобы их магнитные оси были сдвинуты в пространстве относительно друг друга на угол 2π/3, т.е. на 120°. На рис.1 каждая фаза обмотки статора условно показана состоящей из одного витка.

Начала фаз обозначены буквами A, B и C, а концы – X, Y, Z. Ротор 3 представляет собой электромагнит, возбуждаемый постоянным током обмотки возбуждения 4, расположенной на роторе.

При вращении ротора турбиной с равномерной скоростью в обмотках фаз статора индуктируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся друг от друга по фазе на 120° вследствие их пространственного смещения.

На схеме обмотку (или фазу) источника питания изображают как показано на рис.2.

За условное положительное направление ЭДС в каждой фазе принимают направление от конца к началу. Обычно индуктированные в обмотках статора ЭДС имеют одинаковые амплитуды и сдвинуты по фазе относительно друг друга на один и тот же угол 120°. Такая система ЭДС называется симметричной.

clip_image157

 


Соединения приемников в трехфазных цепях (схемы, их достоинства и недостатки)

В период зарождения трехфазных систем имелись попытки использовать несвязанную систему, в которой фазы обмотки генератора не были электрически соединены между собой и каждая фаза соединялась со своим приемником двумя проводами (рис. 3.5). Такие системы не получили применения вследствие их неэкономичности: для соединения генератора с приемником требовалось шесть проводов (рис. 3.5)

clip_image159

 

Схема, основные соотношения и векторная диаграмма при соединении приемников звездой с нейтральным проводом

Трехфазная цепь с нейтральным проводом будет четырехпроводной.

Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена на рис. 7. 1.

 

clip_image161

Провода, идущие от источника к нагрузке называют линейными проводами, провод, соединяющий нейтральные точки источника Nи приемника N' называют нейтральным (нулевым) проводом.

     Напряжения  между началами фаз  или между линейными проводами называют линейными напряжениями. Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями.

       Токи в фазах приемника или источника называют фазными токами, токи в линейных проводах - линейными токами. Так как линейные провода соединены последовательно с фазами источника и приемника, линейные токи при соединении звездой являются одновременно фазными токами.

Iл=Iф , ZN - сопротивление нейтрального провода.

Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений clip_image163

На рис. 7.2 изображена векторная диаграмма фазных и линейных напряжений симметричного источника.

 clip_image165 Из векторной диаграммы видно, что Uл =UAB=2Uфcos300=2Uф√3/2=√3∙Uф.  При симметричной системе ЭДС источника линейное напряжение больше фазного  в √3 раз. Uл = √3 Uф.

 

Схема, основные соотношения и векторная диаграмма при соединении приемников звездой без нейтрального провода

Трехфазная цепь без нейтрального провода – трехпроводной.

Схема соединения источника и приемника звездой без нейтрального провода приведена на рис. 3.10.

clip_image167рис. 3.10

При симметричной нагрузке, когда Za = Zb = Zc = Zφ, напряжение между нейтральной точкой источника N и нейтральной точкой приемника n равно нулю, UnN = 0.

Соотношение между фазными и линейными напряжениями приемника также равно √3, т.е. UФ = UЛ /√3  , а токи в фазах определяются по формулам, что и для четырехпроводной цепи. В случае симметричного приемника достаточно определить ток только в одной из фаз. Сдвиг фаз между током и соответствующим напряжением φ = arctg (X / R).

При несимметричной нагрузке Za ≠ Zb ≠ Zc между нейтральными точками приемника и источника электроэнергии возникает напряжение смещения нейтрали UnN.

Для определения напряжения смещения нейтрали можно воспользоваться формулой межузлового напряжения, так как схема рис 3.10 представляет собой схему с двумя узлами, clip_image169, где: Ya = 1 / Za; Yb = 1 / Zb; Yc = 1 / Zc – комплексы проводимостей фаз нагрузки.

Очевидно, что теперь напряжения на фазах приемника будут отличаться друг от друга. Из второго закона Кирхгофа следует, что

Úa = ÚA - ÚnN; Úb = ÚB - ÚnN; Úc = ÚC - ÚnN.

Зная фазные напряжения приемника, можно определить фазные токи:

İa = Úa / Za = Ya Úa; İb = Úb / Zb = Yb Úb; İc = Úc / Zc = Yc Úc.

Векторы фазных напряжений можно определить графически, построив векторную (топографическую) диаграмму фазных напряжений источника питания и UnN (рис. 3.11).

При изменении величины (или характера) фазных сопротивлений напряжение смещений нейтрали UnN может изменяться в широких пределах. При этом нейтральная точка приемника n на диаграмме может занимать разные положения, а фазные напряжения приемника Úa, Úb и Úc могут отличаться друг от друга весьма существенно.

Таким образом, при симметричной нагрузке нейтральный провод можно удалить и это не повлияет на фазные напряжения приемника. При несимметричной нагрузке и отсутствии нейтрального провода фазные напряжения нагрузки уже не связаны жестко с фазными напряжениями генератора, так как на нагрузку воздействуют только линейные напряжения генератора. Несимметричная нагрузка в таких условиях вызывает несимметрию ее фазных напряжений Úa, Úb, Úc и смещение ее нейтральной точки n из центра треугольника напряжений (смещение нейтрали).clip_image171 рис. 3.11

Направление смещения нейтрали зависит от последовательности фаз системы и характера нагрузки.

Поэтому нейтральный провод необходим для того, чтобы:

1)    выравнивать фазные напряжения приемника при несимметричной нагрузке;

2)    подключать к трехфазной цепи однофазные приемники с номинальным напряжением в √3   раз меньше номинального линейного напряжения сети.

Следует иметь в виду, что в цепь нейтрального провода нельзя ставить предохранитель, так как перегорание предохранителя приведет к разрыву нейтрального провода и появлению значительных перенапряжений на фазах нагрузки.

 

 Схема, основные соотношения и векторная диаграмма при соединении треугольником

Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке.

         На рис. 7.3 изображена трехфазная цепь, соединенная треугольником. Как видно из рис. 7.3, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы. Uл = UФ.

IA, IB, IC - линейные токи; Iab, Ibc, Ica- фазные токи.

 Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с. clip_image173

clip_image175Рис.7.3

Линейный ток равен геометрической разности соответствующих фазных токов.

     На рис. 7.4  изображена  векторная  диаграмма трехфазной цепи, соединенной треугольником при симметричной нагрузке. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений.

clip_image177 Рис. 7.4 Из векторной диаграммы видно, что Iл=2Iфcos300=2Iф∙√3/2=√3∙Iф.Iл = √3 Iф - при симметричной нагрузке.

      Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме "звезда". Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.

 


 Мощность трехфазных цепей

Трехфазная цепь является обычной цепью синусоидального тока с несколькими источниками.

         Активная мощность трехфазной цепи равна сумме активных мощностей фаз clip_image179

Формула выше используется для расчета активной мощности в трехфазной цепи при несимметричной нагрузке.

clip_image181

 При соединении в треугольник симметричной нагрузки  UФ=Uл, IФ=Iл/√3.

При соединении в звезду UФ=Uл/√3, IФ=Iл. 

В обоих случаях clip_image183

 

Понятие об энергоснабжении предприятий

Энергоснабжение - обеспечение предприятия всеми видами энергии и топлива. Предприятие само может производить энергию (напр., на заводской ТЭЦ) или получать ее со стороны.

Энергосбережение (экономия энергии) — реализация правовых, организационных, научных, производственных, технических и экономических мер, направленных на эффективное (рациональное) использование (и экономное расходование) топливно-энергетических ресурсов и на вовлечение в хозяйственный оборот возобновляемых источников энергии. Энергосбережение — важная задача по сохранению природных ресурсов.

К основным теплоносителям промышленности относятся следующие вещества: вода, водяной пар, топочные газа, горячий воздух, технологический пар и сжатый воздух в швейных цехах, вентиляция и кондиционеры, и др.

Для энергосбережения предприятия используют энергосберегающие устройства. В производственных цехах на подстанциях применяют ККУ(конденсаторные установки), которые компенсируют реактивную составляющую индуктивной нагрузки, но они рассчитываются на конкретную мощность.

Успешное применение энергосберегающей технологии в значительной мере предопределяет нормы технологического и строительного проектирования зданий и, в частности, требования к параметрам внутреннего воздуха, удельного тепло-, влаго-, паро-, газовыделения.


Назначение, устройство, и классификация трансформаторов

Трансформатор — это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты. Трансформатор осуществляет преобразование напряжения переменного тока и/или гальваническую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике. Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.

На схемах трансформатор обозначается следующим образом:

clip_image185Центральная толстая линия соответствует сердечнику, 1 — первичная обмотка (обычно слева), 2,3 — вторичные обмотки. Число полуокружностей в очень грубом приближении символизирует число витков обмотки (больше витков — больше полуокружностей, но без строгой пропорциональности).

При обозначении трансформатора жирной точкой около вывода могут быть указаны начала катушек (не менее чем на двух катушках, знаки мгновенно действующей ЭДС на этих выводах одинаковы). Применяется при обозначении промежуточных трансформаторов в усилительных (преобразовательных) каскадах для подчёркивание син- или противофазности, а также в случае нескольких (первичных или вторичных) обмоток, если соблюдение «полярности» их подключения необходимо для работы остальной части схемы. Если начала обмоток не указаны явно, то предполагается, что все они направлены в одну сторону (после конца одной обмотки — начало следующей).

Классификация:

■ по условиям применения и эксплуатации, учитывающих требования по стойкости к внешним воздействующим факторам;

■ по функциональному назначению, которое определяется видами РЭА;

■ по параметрам входной электрической энергии (рабочее напряжение и частота);

 ■ по конструктивно-технологическим параметрам и характеристикам,

основными из которых являются конструктивные разновидности

магнитопроводов.


Работа трансформаторов в различных режимах

1. Режим холостого хода. Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в сердечнике. Когда вторичные обмотки ни к чему не подключены (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток, протекающий через первичную обмотку, невелик. Для трансформатора с сердечником из магнитомягкого материала (ферромагнитного материала трансформаторной стали) ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода. Мощность потерь можно вычислить, умножив активную составляющую тока холостого хода на напряжение, подаваемое на трансформатор.

Для трансформатора без ферромагнитного сердечника потери на перемагничивание отсутствуют, а ток холостого хода определяется сопротивлением индуктивности первичной обмотки, которое пропорционально частоте переменного тока и величине индуктивности.

Напряжение на вторичной обмотке в первом приближении определяется законом Фарадея.

2.                Нагрузочный режим. Этот режим характеризуется замкнутой на нагрузке вторичной цепью трансформатора. Данный режим является основным рабочим для трансформатора. В режиме короткого замыкания, на первичную обмотку трансформатора подается переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчетному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить умножив напряжение короткого замыкания на ток короткого замыкания

Данный режим широко используется в измерительных трансформаторах тока.

3. Режим короткого замыкания. Этот режим получается в результате замыкания вторичной цепи накоротко. С его помощью можно определить потери полезной мощности на нагрев проводов в цепи трансформатора. Это учитывается в схеме замещения реального трансформатора при помощи активного сопротивления. При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.

Схематично, процесс преобразования можно изобразить следующим образом: U1I1I1N1→ε2I2.

Мгновенный магнитный поток в магнитопроводе трансформатора определяется интегралом по времени от мгновенного значения ЭДС в первичной обмотке и в случае синусоидального напряжения сдвинут по фазе на 90° по отношению к ЭДС. Наведённая во вторичных обмотках ЭДС пропорциональна первой производной от магнитного потока и для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке.

 


Потери и КПД трансформаторов

Степень потерь (и снижения КПД) в трансформаторе зависит, главным образом, от качества, конструкции и материала «трансформаторного железа» (электротехническая сталь). Потери в стали состоят в основном из потерь на нагрев сердечника, на гистерезис и вихревые токи. Потери в трансформаторе, где «железо» монолитное, значительно больше, чем в трансформаторе, где оно составлено из многих секций (так как в этом случае уменьшается количество вихревых токов). На практике монолитные сердечники не применяются. Для снижения потерь в магнитопроводе трансформатора магнитопровод может изготавливаться из специальных сортов трансформаторной стали с добавлением кремния, который повышает удельное сопротивление железа электрическому току, а сами пластины лакируются для изоляции друг от друга.

КПД трансформатора находится по следующей формуле: η=clip_image187

Где P0 — потери холостого хода (кВт) при номинальном напряжении

        PL — нагрузочные потери (кВт) при номинальном токе

        P2 — активная мощность (кВт), подаваемая на нагрузку

        n — относительная степень нагружения (при номинальном токе n=1).

 


Устройство, схемы и группы соединения обмоток трехфазных трансформаторов

Существуют три основных способа соединения фазовых обмоток каждой стороны трёхфазного трансформатора:

Y-соединение ("звезда"), где каждая обмотка соединена одним из концов с общей точкой, называемой нейтральной. Различают "звезду" с выводом от общей точки (обозначение Y0 или Yn) и без него (Y)

Δ-соединение ("треугольник"), где три фазных обмотки соединены последовательно

Z-соединение ("зигзаг"). При данном способе соединения каждая фазная обмотка состоит из двух одинаковых частей, размещенных на разных стержнях магнитопровода и соединенных последовательно, встречно. Полученные три фазные обмотки соединяются в общей точке, аналогично "звезде". Обычно применяется "зигзаг" с отводом от общей точки (Z0)

Как первичная, так и вторичная обмотки трансформатора могут быть соединены любым из трёх способов, показанным выше, в любых комбинациях. Конкретный способ и комбинация определяются назначением трансформатора.

Y-соединение обычно применяется для обмоток, работающих под высоким напряжением. Это объясняется многими причинами:

- обмотки трехфазного автотрансформатора могут быть соединены только "звездой";

- когда вместо одного сверхмощного трехфазного трансформатора применяют три однофазных автотрансформатора соединить их иным способом невозможно;

- когда вторичная обмотка трансформатора питает высоковольтную линию, наличие заземленной нейтрали снижает перенапряжения при ударе молний. Без заземления нейтрали невозможна работа дифференциальной защиты линии, в части утечки на землю. При этом первичные обмотки всех принимающих трансформаторов на этой линии не должны иметь заземленной нейтрали;

- существенно упрощается конструкция регуляторов напряжения (переключателей отпаек). Размещение отпаек обмотки с "нейтрального" конца обеспечивает минимальное количество групп контактов. Снижаются требования к изоляции переключателя, т.к. он работает при минимальном напряжении относительно Земли;

- это соединение наиболее технологично и наименее металлоемко.

Соединение в "треугольник" применяется в трансформаторах, где одна обмотка уже соединена "звездой", в особенности с выводом нейтрали.

Эксплуатация все еще широко распространенных трансформаторов со схемой Y/Y0 оправдана, если нагрузка на его фазы одинаковая (трехфазный двигатель, трехфазная электропечь, строго рассчитанное уличное освещение и пр.) Если же нагрузка несимметричная (бытовая и прочая однофазная), то магнитный поток в сердечнике выходит из равновесия, а нескомпенсированный магнитный поток (так называемый "поток нулевой последовательности") замыкается через крышку и бак, вызывая их нагрев и вибрацию. Первичная обмотка не может этот поток скомпенсировать, т.к. её конец соединен с виртуальной нейтралью, не соединенной с генератором. Выходные напряжения будут искажены (возникнет "перекос фаз"). Для однофазной нагрузки такой трансформатор по сути является дросселем с разомкнутым сердечником, и полное его сопротивление велико. Ток однофазного короткого замыкания будет сильно занижен по сравнению с расчетным (для трехфазного к.з.), что делает ненадежной работу защитной аппаратуры.

Если же первичная обмотка соединена треугольником (трансформатор со схемой Δ/Y0), то обмотки каждого стержня имеют два вывода как к нагрузке, так и к генератору, и первичная обмотка может подмагничивать каждый стержень в отдельности, не влияя на два других и не нарушая магнитное равновесие. Однофазное сопротивление такого трансформатора будет близко к расчетному, перекос напряжения практически устранен.

С другой стороны, у обмотки треугольником усложняется конструкция переключателя отпаек (контакты под высоким напряжением).

Соединение обмотки треугольником позволяет циркулировать третьей и кратным ей гармоникам тока внутри кольца, образованного тремя последовательно соединёнными обмотками. Замыкание токов третьей гармоники необходимо для снижения сопротивления трансформатора несинусоидальным токам нагрузки (нелинейная нагрузка) и поддержания его напряжения синусоидальным. Третья гармоника тока во всех трёх фазах имеет одинаковое направление, данные токи не могут циркулировать в обмотке, соединённой звездой с изолированной нейтралью.

Недостаток троичных синусоидальных токов в намагничивающем токе может привести к значительным искажениям наведённого напряжения, в случаях, если у сердечника 5 стержней, или он исполнен в броневом варианте. Соединённая треугольником обмотка трансформатора устранит данное нарушение, так как обмотка с соединением треугольником обеспечит затухание гармонических токов. Иногда в трансформаторах предусмотрено наличие третичной Δ-соединённой обмотки, предусмотренной не для зарядки, а для предотвращения искажения напряжения и понижения полного сопротивления нулевой последовательности. Такие обмотки называются компенсационными. Распределительные трансформаторы, предназначенные для зарядки, между фазой и нейтралью на стороне первого контура, снабжены обычно соединённой треугольником обмоткой. Однако ток в соединённой треугольником обмотке может быть очень слабым для достижения минимума номинальной мощности, а требуемый размер проводника обмотки чрезвычайно неудобен для заводского изготовления. В подобных случаях высоковольтная обмотка может быть соединена звездой, а вторичная обмотка — зигзагообразно. Токи нулевой последовательности, циркулирующие в двух отводах зигзагообразно соединённой обмотки будут балансировать друг друга, полное сопротивление нулевой последовательности вторичной стороны главным образом определяется полем рассеяния магнитного поля между двумя разветвлениями обмоток, и выражается весьма незначительной цифрой.

При использовании соединения пары обмоток различными способами возможно достигнуть различных степеней напряжения смещения между сторонами трансформатора.

Сдвиг фаз между ЭДС первичной и вторичной обмоток принято выражать группой соединений. Для описания напряжения смещения между первичной и вторичной, или первичной и третичной обмотками, традиционно используется пример с циферблатом часов. Так как этот сдвиг фаз может изменяться от 0° до 360°,а кратность сдвига составляет 30°, то для обозначения группы соединений выбирается ряд чисел от 1 до 12, в котором каждая единица соответствует углу сдвига в 30°. Одна фаза первичной указывает на 12, а соответствующая фаза другой стороны указывает на другую цифру циферблата.

Наиболее часто используемая комбинация Yd11 означает, например, наличие 30º смещения нейтрали между напряжениями двух сторон

 


Назначение, схема и работа автотрансформатора, сварочного и измерительных трансформаторов

Автотрансформа́тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4.Существенным достоинством является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость. Схема автотрансформатора:

clip_image189

Сварочный трансформатор – это аппарат, преобразующий переменное напряжение сети в переменное напряжение для сварки (как правило, понижает переменное напряжение до значения менее 141 В).

clip_image191

Сварочный трансформатор преобразует электрическую энергию напряжением 220 или 380 В в электрическую энергию напряжением холостого хода 60 В, необходимую для дуговой сварки металла.

 Основными конструктивными элементами сварочного трансформатора (рисунок выше) являются: магнитная система 2, обмотки ВН 1 и НН 3 и реактор (дроссель), предназначенный для регулирования вторичного тока — тока сварки путем изменения воздушного зазора магнитной цепи. Реактор состоит из неподвижной магнитной   системы 4 и ее обмоток 5 и подвижной 6, изменяющей воздушный зазор между ними. При подсоединении, как указано на схеме, проводов от трансформатора и реактора к свариваемой детали 7 и электроду 8 посредством токодержателя 9 между ними возникает дуга, плавящая металл.

 В настоящее время сварочные трансформаторы изготовляют в однокорпусном исполнении: обмотки трансформатора и реактора размещены на общей магнитной системе и закрыты одним кожухом.

Измерительный трансформатор — электрический трансформатор для контроля напряжения, тока или фазы сигнала первичной цепи. Измерительный трансформатор рассчитывается таким образом, чтобы оказывать минимальное влияние на измеряемую (первичную) цепь; минимизировать искажения пропорции и фазы измеряемого сигнала в измерительной (вторичной) цепи. Делится на трансформатор тока и напряжения. clip_image193

Принципиальная схема (а) и устройство (б) трансформатора тока, предназначенного для внутренней установки:

 1.2 — соответственно первичная и вторичная обмотки; 3, 5 — кольцевые сердечники; 4 — фарфоровый изолятор; W — ваттметр; Л — амперметр; КА — реле.

 


Назначение, схема и работа импульсного трансформатора

Импульсный трансформатор (ИТ) — трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе.

Импульсные трансформаторы, предназначенные для трансформирования коротких импульсов с минимальными искажениями и работающие в режиме переходных процессов, находят применение в различных импульсных устройствах. Импульсные трансформаторы позволяют изменить уровень и полярность формируемого импульса напряжения или тока, согласовать сопротивление генератора импульсов с сопротивлением нагрузки, отделить потенциалы источника и приемника импульсов, получить на нескольких раздельных нагрузках импульсы от одного генератора, создать обратную связь в контурах схемы импульсного устройства. Импульсный трансформатор может быть также использован и как преобразовательный элемент, например дифференцирующий трансформатор.

Генерация мощных импульсов современных параметров невозможна без применения высоковольтных импульсных трансформаторов. Получаемая форма выходных импульсов во многом определяется свойствами ИТ, особенно при большом коэффициенте трансформации. Применение выходных повышающих ИТ позволяет резко сократить габариты, вес и стоимость генерирующих устройств, хотя и негативно влияет на форму квазипрямоугольных импульсов, увеличивая относительные длительности фронта, среза и неравномерность вершины. В связи с этим величина коэффициента трансформации современных выходных ИТ при длительности импульсов в единицы и десятки микросекунд возрастает до 10 - 20 и более.

Наибольшее распространение получили ИТ, трансформирующие импульсы, по форме близкие к прямоугольным, которые обладают крутым фронтом и постоянством напряжения вершины импульса, необходимыми для работы широкого класса нагрузок. Импульс прямоугольной формы должен быть трансформирован с малыми искажениями, длительность фронта импульса должна быть значительно меньше длительности импульса и переходные процессы при трансформации фронта и вершины импульса рассматриваются раздельно. Эквивалентные схемы ИТ при раздельном рассмотрении переходных процессов упрощаются и позволяют установить связь между параметрами эквивалентных схем и конструктивными параметрами ИТ и найти такие соотношения между ними, при которых удовлетворяются требования к длительности фронта и скосу вершины импульса.

Трансформация фронта импульса с малыми искажениями достигается при малых значениях индуктивности рассеяния и распределенной емкости трансформатора, которые уменьшаются с уменьшением числа витков обмоток и сечения магнитопровода ИТ. В то же время для трансформации вершины импульса с малым спадом следует стремиться к увеличению индуктивности намагничивания трансформатора, возрастающей с увеличением числа витков и сечения магнитопровода.

Удовлетворение одновременно нескольким поставленным требованиям при расчете ИТ потребует нахождения компромиссного решения. Оно должно быть принято в зависимости от значимости того или иного поставленного требования.

Расчеты ИТ производятся на основе приближенной эквивалентной схемы с сосредоточенными параметрами. Индуктивный эффект и потери в проводах обмоток можно учитывать с помощью известной Т-образной эквивалентной схемы.

clip_image195

Параметры схемы:

Lmu- индуктивность намагничивания трансформатора, учитывающая запасание энергии в основном потоке взаимной индукции магнитопровода при приложении напряжения к первичной обмотке. С потоком в сердечнике связан ток намагничивания, протекающий по первичной обмотке;

Ls1, Ls2 - индуктивности рассеяния обмоток, учитывающие запасание энергии в потоках рассеяния, связанных с протеканием по обмоткам тока нагрузки;

R1, R2 - активные сопротивления проводов обмоток, учитывающие потери при протекании по ним тока нагрузки;

 RB- эквивалентное сопротивление, учитывающие потери энергии в магнитопроводе на гистерезис и вихревые токи.

 


Машины постоянного тока, устройство и принцип действия

Машина постоянного тока — электрическая машина, предназначенная для преобразования механической энергии в электрическую постоянного тока (генератор) или для обратного преобразования (двигатель). Машина постоянного тока обратима.

Машина постоянного тока образуется из синхронной обращённой конструкции, если её якорь снабдить коллектором, который в генераторном режиме играет роль выпрямителя, а в двигательном — преобразователя частоты. Благодаря наличию коллектора по обмотке якоря проходит переменный ток, а во внешней цепи, связанной с якорем, — постоянный.

Различают следующие виды машин постоянного тока:

1)    по наличию коммутации: с коммутацией (обычные); без коммутации (униполярный генератор и униполярный электродвигатель);

2)    по типу переключателей тока:  с коллекторными переключателями тока (с щёточно-коллекторным переключателем); с бесколлекторными переключателями тока (с электронным переключателем (вентильный электродвигатель)).

3)    по мощности: микромашины — до 500 мВт; малой мощности — 0,5-10 кВт; средней мощности — 10-200 кВт; большой мощности — более 200 кВт.

4)    в зависимости от частоты вращения: тихоходные — до 300 об./мин.; средней быстроходности — 300—1500 об./мин.; быстроходные — 1500-6000 об./мин.; сверхбыстроходные — более 6000 об./мин.

5)    по расположению вала: горизонтальные; вертикальные.

В принципе одна и та же машина постоянного тока может работать и как двигатель, и как генератор. Такое свойство машины постоянного тока, так называемое обратимость, предоставляет нам возможность не подвергать рассмотрению отдельно устройство генератора или двигателя. Тем не менее, всякую электрическую машину завод выпускает для обусловленного, определённого назначения – это функционировать только в качестве двигателя или только в качестве генератора. Лишь иногда применяют машины постоянного тока, подготовленные для работы, как двигателем, так и генератором.

Генераторы постоянного тока используют, когда требуется независимый источник тока, к примеру, для питания отдельных видов электромагнитов, электролизных ванн, электромагнитных муфт, электродвигателей, сварочных установок и т.п. В случаях, когда требуется плавная регулировка скорости, используют электродвигатели постоянного тока, например в электровозах, троллейбусах, некоторых типах подъемных кранов, в устройствах автоматики.

Статор машины постоянного тока состоит из сердечника и станины. Производят станину из малоуглеродистой стали, имеющей большую магнитную проницаемость. Благодаря этому станина служит и магнитопроводом. В то же время она является основной деталью, объединяющей другие детали и сборочные единицы (узлы) машины в одно целое.

 Изнутри на болтах к станине крепят полюсы, состоящие из полюсного наконечника, сердечника и катушки. Плюсы делятся на главные и дополнительные. Для возбуждения магнитного поля служат главные полюсы; отчего обмотку их катушек именуют обмоткой возбуждения. В машинах повышенной мощности (более 1 кВт) устанавливают дополнительные полюсы для улучшения работы машины; соединяют обмотку дополнительных полюсов последовательно с обмоткой ротора.

Ротор машины постоянного тока состоит из сердечника и обмотки. Из топких листов электротехнической стали набирают сердечник якоря, которые в свою очередь изолированы друг от друга лаковым покрытием, тем самым снижая потери на вихревые токи. Обмотку якоря укладывают в пазы сердечника. А в сердечнике якоря производят вентиляционные каналы. В машине постоянного тока устанавливают коллектор, для того чтобы ток проходил в одном и том же направлении от обмотки якоря во внешнюю цепь (в генераторе) или из внешней цепи к обмотке якоря (в двигателе). Набирание коллектора происходит из медных пластин, изолированных друг от друга миканитовыми прокладками. К нескольким или одному виткам обмотки якоря присоединяют каждую пластину коллектора.

Коллектор и сердечник якоря закрепляют на одном и том же валу. Благодаря этому, коллектор играет роль устройства, конструктивно объединенное с якорем (ротором) электрической машины и являющееся механическим преобразователем частоты.

Токосъемные щетки скользят по составляющим коллектора, присоединенным к виткам обмотки якоря пластинам, изолированным друг от друга. Сквозь эти щетки обмотка якоря и коллектор подсоединяется к внешней электрической цепи. Щетки устанавливают в обоймы щеткодержателя, а также прижимают пружинами к коллектору. На момент работы машины щетки скользят по коллектору. Щеткодержатели же в своё время крепят в траверсе.

Машина постоянного тока может работать в двух режимах: двигательном и генераторном, в зависимости от того, какую энергию к ней подвести — если электрическую, то электрическая машина будет работать в режиме электродвигателя, а если механическую — то будет работать в режиме генератора. Однако электрические машины, как правило предназначены, заводом изготовителем, для одного определенного режима работы — или в режиме генератора, или электродвигателя.

Электродвигатели постоянного тока стоят почти на каждом автомобиле, это стартер, электропривод стеклоочистителя, вентилятор «печки» и др.

В роли индуктора выступает статор, на котором расположена обмотка. На неё подаётся постоянный ток, в результате чего вокруг неё создаётся постоянное магнитное поле. Обмотка ротора состоит из проводников, запитанных через коллектор. В результате на них действуют пары сил Ампера, которые вызывают вращающий момент. Направление сил определяется по правилу «буравчика». Однако этот вращающий момент способен повернуть ротор только на 1800, после чего он остановится. Чтобы это предотвратить, используется щёточно-коллекторный узел, выполняющий роль переключателя полюсов и датчика положения ротора (ДПР).

В генераторе индуктором также является статор, создающий постоянное магнитное поле между соответствующими полюсами. При вращении ротора, в проводниках обмотки якоря, перемещающихся в магнитном поле, по закону электромагнитной индукции наводится ЭДС, направление которой определяется по правилу правой руки. Переменная ЭДС обмотки якоря выпрямляется с помощью коллектора, через неподвижные щетки, посредством которых обмотка соединяется с внешней сетью.

Автомобильный генератор представляет собой генератор переменного трёхфазного тока с трёхфазным выпрямителем на шести диодах по схеме академика Ларионова.

 


Асинхронные электродвигатели, устройство и принцип действия

Асинхронная машина — это электрическая машина переменного тока, частота вращения ротора которой не равна (в двигательном режиме меньше) частоте вращения магнитного поля, создаваемого током обмотки статора.

В ряде стран к асинхронным машинам причисляют также коллекторные машины. Второе название асинхронных машин — индукционные вследствие того, что ток в обмотке ротора индуцируется вращающимся полем статора. Асинхронные машины сегодня составляют большую часть электрических машин. В основном они применяются в качестве электродвигателей и являются основными преобразователями электрической энергии в механическую.

Достоинства:

1)Лёгкость в изготовлении.

2)Отсутствие электрического контакта ротора со статической частью машины.

Недостатки:

1)Небольшой пусковой момент.

2)Значительный пусковой ток.

Асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод (сердечник); все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.

Обмотка статора представляет собой трёхфазную (в общем случае — многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120 эл.град. Фазы обмотки статора соединяют по стандартным схемам «треугольник» или «звезда» и подключают к сети трёхфазного тока. Магнитопровод статора перемагничивается в процессе изменения тока в обмотке статора, поэтому его набирают из пластин электротехнической стали для обеспечения минимальных магнитных потерь. Основным методом сборки магнитопровода в пакет является шихтовка.

По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из пластин электротехнической стали.

Принцип действия: На обмотку статора подаётся переменное напряжение, под действием которого по этим обмоткам протекает ток и создаёт вращающееся магнитное поле. Магнитное поле воздействует на обмотку ротора и по закону электромагнитной индукции наводит в ней ЭДС. В обмотке ротора под действием наводимой ЭДС возникает ток. Ток в обмотке ротора создаёт собственное магнитное поле, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате на каждый зубец магнитопровода ротора действует сила, которая, складываясь по окружности, создаёт вращающий электромагнитный момент, заставляющий ротор вращаться.

 


Синхронные электродвигатели, устройство и принцип действия

Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре.

Разновидности синхронных машин: Гидрогенератор — явнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от гидравлической турбины (при низких скоростях вращения 50-600 об/мин).

Турбогенератор — неявнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от паровой или газовой турбины при высоких скоростях вращения ротора (6000 (редко), 3000, 1500 об/мин.)

Синхронный компенсатор — синхронный двигатель, предназначенный для выработки реактивной мощности, работающий без нагрузки на валу (в режиме холостого хода); при этом по обмотке якоря проходит практически только реактивный ток. Синхронный компенсатор может работать в режиме улучшения коэффициента мощности или в режиме стабилизации напряжения. Дает ёмкостную нагрузку.

Машина двойного питания (в частности АСМ) — синхронная машина с питанием обмоток ротора и статора токами разной частоты, за счёт чего создаются несинхронные режимы работы.

Ударный генератор — синхронный генератор (как правило, трёхфазного тока), предназначенный для кратковременной работы в режиме короткого замыкания (КЗ).

Также существуют безредукторные, шаговые, индукторные, гистерезисные, бесконтактные синхронные двигатели.

Устройство. Основными частями синхронной машины являются якорь и индуктор. Наиболее частым исполнением является такое, при котором якорь располагается на статоре, а на отделённом от него воздушным зазором роторе находится индуктор.

Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Поле якоря оказывает воздействие на поле индуктора и называется поэтому также полем реакции якоря. В генераторах поле реакции якоря создаётся переменными токами, индуцируемыми в обмотке якоря от индуктора.

Индуктор состоит из полюсов — электромагнитов постоянного тока или постоянных магнитов (в микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную. Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока. При неявнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, незаполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса.

Для уменьшения магнитного сопротивления, то есть для улучшения прохождения магнитного потока применяются ферромагнитные сердечники ротора и статора. В основном они представляют собой шихтованную конструкцию из электротехнической стали (то есть набранную из отдельных листов). Электротехническая сталь обладает рядом интересных свойств. В том числе она имеет повышенное содержание кремния, чтобы повысить её электрическое сопротивление и уменьшить тем самым вихревые токи.

Принцип действия. Двигательный принцип. Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щетка - кольцо), в маломощных — постоянные магниты. Существует обращённая конструкция двигателей, в которой якорь расположен на роторе, а индуктор — на статоре (в устаревших двигателях, а также в современных криогенных синхронных машинах, в которых в обмотках возбуждения используются сверхпроводники.)

Запуск двигателя. Двигатель требует разгона до частоты, близкой к частоте вращения магнитного поля в зазоре, прежде чем сможет работать в синхронном режиме. При такой скорости вращающееся магнитное поле якоря сцепляется с магнитными полями полюсов индуктора (если индуктор расположен на статоре, то получается, что вращающееся магнитное поле вращающегося якоря (ротора) неподвижно относительно постоянного поля индуктора (статора), если индуктор на роторе, то магнитное поле вращающихся полюсов индуктора (ротора) неподвижно относительно вращающегося магнитного поля якоря (статора)) — это явление называется «вход в синхронизм».

Для разгона обычно используется асинхронный режим, при котором обмотки индуктора замыкаются через реостат или накоротко, как в асинхронной машине, для такого режима запуска в машинах на роторе делается короткозамкнутая обмотка, которая также выполняет роль успокоительной обмотки, устраняющей "раскачивание" ротора при синхронизации. После выхода на скорость близкую к номинальной (>95%) индуктор запитывают постоянным током.

В двигателях с постоянными магнитами применяется внешний разгонный двигатель.

Часто на валу ставят небольшой генератор постоянного тока, который питает электромагниты.

Также используется частотный пуск, когда частоту тока якоря постепенно увеличивают от 0 до номинальной величины. Или наоборот, когда частоту индуктора понижают от номинальной до 0, т.е. до постоянного тока.

Частота вращения ротора  n[об/мин] остаётся неизменной, жёстко связанной с частотой сети  f[Гц] соотношением: n=60f/p, где  p — число пар полюсов ротора.

Синхронные двигатели при изменении возбуждения меняют импеданс с емкостного на индуктивный. Перевозбуждённые СД на холостом ходу применяют в качестве компенсаторов реактивной мощности. Синхронные двигатели в промышленности обычно применяют при единичных мощностях свыше 300 кВт, при меньших мощностях обычно применяется более простой (и надежный) асинхронный двигатель с короткозамкнутым ротором.

Генераторный режим. Обычно синхронные генераторы выполняют с якорем, расположенным на статоре, для удобства отвода электрической энергии. Поскольку мощность возбуждения невелика по сравнению с мощностью, снимаемой с якоря (0,3...2%), подвод постоянного тока к обмотке возбуждения с помощью двух контактных колец не вызывает особых затруднений. Принцип действия синхронного генератора основан на явлении электромагнитной индукции; при вращении ротора магнитный поток, создаваемый обмоткой возбуждения, сцепляется поочередно с каждой из фаз обмотки статора, индуцируя в них ЭДС. В наиболее распространенном случае применения трехфазной распределенной обмотки якоря в каждой из фаз, смещенных друг относительно друга на 1200, индуцируется синусоидальная ЭДС. Соединяя фазы по стандартным схемам «треугольник» или «звезда», на выходе генератора получают трехфазное напряжение, являющееся общепринятым стандартом для магистральных электросетей.

Частота индуцируемой ЭДС  f[Гц] связана с частотой вращения ротора  n[об/мин] соотношением:

f=np/60, где p  — число пар полюсов ротора.

Часто синхронные генераторы используют вместо коллекторных машин для генерации постоянного тока, подключая их обмотки якоря к трехфазным выпрямителям.  

 


Пускорегулирующая аппаратура для ручного, полуавтоматического и автоматического управления и защиты

Пускорегулирующий аппарат—светотехническое изделие, с помощью которого осуществляется питание разрядной лампы от электрической сети, обеспечивающее необходимые режимы зажигания, разгорания и работы лампы и конструктивно оформленное в виде единого аппарата или нескольких отдельных блоков.

Для ручного управления и защиты.

Аппараты ручного управления: рубильник; силовой распределительный ящик; рубильник-предохранитель: нож; контактные губки; траверса; рукоятка; изоляционная плита;  контактная стойка; шкаф; встроенный рубильник;  предохранитель;  рычажная система; подвижный нож-предохранитель.

К аппаратам защиты относятся плавкие предохранители, электромагниты и тепловые реле защиты.

Для полуавтоматического и Для автоматического.

Для пуска металлорежущих станков и управления их работой применяется различная аппаратура: рубильники, пускатели, переключатели, контакторы. При помощи рубильников электросеть подключается к станкам. Для этого же предназначены пакетные переключатели, которые более компактны и безопасны в работе. Приводятся они в действие ручным поворотным ключом, на оси которого имеются пакеты электроконтактов.

При помощи контакторов и магнитных пускателей осуществляется пуск электродвигателей станков.

Для управления станками в автоматическом или полуавтоматическом режиме используются различные путевые концевые переключатели (ограничители хода), срабатывающие при определенном перемещении суппорта станка или какой-либо его подвижной части (стола, шпинделя). При срабатывании они или отключают полностью станок от работы или включают обратное реверсивное движение.

 

Реле защиты и управления

Реле — электрическое устройство (выключатель), предназначенное для замыкания и размыкания различных участков электрических цепей при заданных изменениях электрических или неэлектрических входных величин. Различают электрические, механические и тепловые реле.

Обеспечение надежной и устойчивой работы Единой национальной электрической сети (ЕНЭС) в определяющей мере связано с функционированием релейной защиты и линейной автоматики (РЗА), предназначенной осуществлять быструю и селективную автоматическую ликвидацию повреждений и анормальных режимов в электрической части энергосистемы. Произошедший за последние годы скачок в развитии средств РЗА определяет необходимость ориентации на широкое внедрение на объектах ЕНЭС систем РЗА на базе интеллектуальных микропроцессорных (МП) устройств. Новые качества и возможности МП устройств, в свою очередь, определяют необходимость внесения корректировок в идеологию построения систем РЗА энергообъектов и соответственно в практику эксплуатации этих систем.

Реле защиты электротехнических устройств и сетей выполняются для защиты от обрыва цепи, превышения тока, а также превышения или снижения напряжения питания. Они рассчитаны на многократное использование, но из-за значительной тепловой инерции (низкая скорость срабатывания) не обеспечивают защиту от токов короткого замыкания.

 


Выбор типа и мощности электродвигателя для различных условий работы

Электродвигатель должен наиболее полно отвечать технико-экономическим требованиям, т. е. отличаться простотой конструкции, надежностью в эксплуатации, наименьшей стоимостью, небольшими габаритами и массой, обеспечивать простое управление, удовлетворять особенности технологического процесса и иметь высокие энергетические показатели при различных режимах работы.

При работе электропривода с длительной постоянной нагрузкой задача выбора электродвигателя (постоянного тока, асинхронного, синхронного) относительно проста.

Для электропривода, не требующего регулирования скорости в больших диапазонах ее изменения, рекомендуется применять синхронные двигатели. Эта рекомендация объясняется тем, что современный синхронный двигатель пускается в ход также быстро как и асинхронный, а его габариты меньше и работа экономичнее, чем асинхронного двигателя той же мощности (у синхронного двигателя выше коэффициент мощности cosφ и больше максимальный момент Mmax на валу).

При этом у асинхронных двигателей последнего поколения можно достаточно эффективно регулировать скорость вращения, осуществлять реверс с необходимым моментом для работы электропривода, но для этого применяются специальные устройства управления.

Но если электродвигатель привода должен работать в условиях регулируемой частоты вращения, реверса, частых пусков, больших изменений нагрузки, то при выборе вида двигателя необходимо сопоставить условия работы электропривода с особенностями механических характеристик различных видов электродвигателей.

В электротехнике принято различать естественную и искусственную механические характеристики двигателя. Естественная характеристика соответствует номинальным (рабочим) условиям его включения, нормальной схеме соединений и отсутствию каких-либо добавочных элементов в цепях двигателя и соединении этих цепей по специальным схемам.

Важным критерием для оценки механических характеристик электродвигателя служит их жесткость.

Оптимальный выбор мощности электродвигателя для привода должен удовлетворять следующим требованиям: надежность в работе;  возможность работоспособного состояния в различных условиях;  экономичность в эксплуатации.

Установка двигателя большей мощности, чем это необходимо по условиям работы привода, вызывает излишние потери энергии при работе электрической машины, обуславливает дополнительные капитальные вложения, увеличение массы и габаритов двигателя.

Установка электродвигателя меньшей мощности снижает производительность электропривода и делает его работу ненадежной. При этом сам электродвигатель в подобных условиях может быть поврежден.

Электродвигатель необходимо выбирать так, чтобы его мощность использовалась возможно полнее. Во время работы двигатель не должен нагреваться до предельно допустимой температуры, в крайнем случае на очень непродолжительное время. Кроме того, двигатель должен нормально работать при возможных временных перегрузках и развивать пусковой момент на валу тот, который требуется для нормального функционирования исполнительного механизма.

 

Источники света и осветительная аппаратура

Источник света — любой объект, излучающий энергию в световом спектре. По своей природе подразделяются на искусственные и естественные.

Источники: фотолюминесценция (падающий на вещество свет частично отражается и частично поглощается),  катодолюминесценция (свечение твердых тел, вызванное бомбардировкой их электронами), хемилюминесценция (при некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света), тепловые излучения – лампы.

Осветительная аппаратура – лампы накаливания, галогенные, люминесцентные, разрядные, компактная, криптоновая, ртутная, стандартная, оптоволокно.

Источники света, которые используются при съемке кино- или телекамерой, именуют по-разному, однако более предпочтительными названиями являются: студийный светильник, осветительный прибор или фонарь.

 

 


Провода и кабели, выбор сечения проводов по допустимому нагреву и допустимой потере напряжения

Расчёт сечения проводов и кабелей осуществляется обычно тремя способами:

 - по допустимому нагреву

 - по допустимой потере напряжения

 - по механической прочности

        После выполнения этих расчётов выбирают стандартное сечения жилы проводника, равное максимальному из расчётных значений (или ближайшее большее).

При относительно небольшой длине линий ( ~ до 30м) расчёт на нагревание является определяющим. При прохождении по проводнику электрического тока выделяется тепло и проводник нагревается. Количество выделенного тепла в проводнике:  Q = I2rt    дж, где I - сила тока, а; r - сопротивление проводника, ом; t - время прохождения тока, сек .

Нагрев изолированных проводов не должен быть выше определённого предела, т.к. изоляция при сильном нагреве может обуглиться и даже загореться. Для безаварийной работы проводов и кабелей нормами установлена предельно допустимая температура нагрева ( 60-80о С) в зависимости от типа изоляции, условий монтажа и температуры окружающей среды. Применяя эти установки. а также зная максимальную силу тока в проводе по таблицам  выбирают сечение проводника. Сечение проводника всегда выбирают равным или большим (но ни вкоем случае ни меньшим), чем расчётное значение тока нагрузки.

По нормам международных стандартов в быту и на производстве в основном требуется применение проводников из меди, поэтому данные на алюминевые проводники здесь опускаются.

 Для упрощённого пересчета медь-алюминий можно применить следующее:  нижнее стандартное значение сечения(согласно линейки стандарных сечений) медного проводника равно следующему большему стандартному значению сечения  для алюминиевого провода (напр. 1.5 мм2 медного провода = 2.5 мм2 алюминиевого провода).

Сечение проводов и кабелей по допустимой потере напряжения определяют главным образом для осветительных сетей. Для силовых сетей этот метод применяют лишь при сравнительно большой их протяжённости.

Допустимую потерю напряжения от источника тока до наиболее отдаленной по значению нагрузки ( в процентах от номинального напряжения) можно применять: ∆U% = 5,0% - для силовых сетей напряжением до 1000в; ∆U% = 2,5% - для осветительных сетей

Сечение проводов и кабелей с одинаковым сечением по всей длине рассчитывают по следующим формулам:

           1.Для трёхфазной сети с сосредоточенной нагрузкой в конце линииclip_image197

где: S - сечение фазных проводов, жил кабелей, шин мм2

Рк -мощность приемника, присоединенного  к сети длиной L на участке длиной lk (l1+l2+...ln), ), kW; lk - длина участка сети между точками присоединения приемника и источника, м; √ - удельная проводимость, (для меди 58...55,5 mΩ\m); U - линейное номинальное напряжение  V ;  ∆U% - заданное значение потери напряжения.  

 


 Защитное заземление

Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другимпричинам (индуктивное влияние соседних токоведущих частей, вынос потенциала, разряд молнии и т. п.).

Эквивалентом земли может быть вода реки или моря, каменный уголь в карьерном залегании и т. п.

Назначение защитного заземления — устранение опасности поражения током в случае прикосновения к корпусу электроустановки и другим нетоковедущим металлическим частям, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам.

Защитное заземление следует отличать от других видов заземления, например, рабочего заземления и заземления молниезащиты.

Рабочее заземление  — преднамеренное соединение с землей отдельных точек электрической цепи, например нейтральных точек обмоток генераторов, силовых и измерительных трансформаторов, дугогасящих аппаратов, реакторов поперечной компенсации в дальних линиях электропередачи, а также фазы при использовании земли в качестве фазного или обратного провода. Рабочее заземление предназначено для обеспечения надлежащей работы электроустановки в нормальных или аварийных условиях и осуществляется непосредственно (т. е. путем соединения проводником заземляемых частей с заземлителем) или через специальные аппараты — пробивные предохранители, разрядники, резисторы и т. п.

Заземление молниезащиты  — преднамеренное соединение с землей молниеприемников и разрядников в целях отвода от них токов молнии в землю.

Принцип действия защитного заземления — снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус и другими причинами. Это достигается путем уменьшения потенциала заземленного оборудования (уменьшением сопротивления заземлителя), а также путем выравнивания потенциалов основания, на котором стоит человек, и заземленного оборудования (подъемом потенциала основания, на котором стоит человек, до значения, близкого к значению потенциала заземленного оборудования).

 

  


Электронно-дырочный переход: образование, физические процессы, тепловой и электрический пробои

p-n-Переход (n — negative — отрицательный, электронный, p — positive — положительный, дырочный), или электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. p-n-Переход является основой для полупроводниковых диодов, триодов и других электронных элементов с нелинейной вольт-амперной характеристикой.

Ввиду неравномерной концентрации на границе раздела полупроводников р- и n-типа возникает диффузионный ток, за счет него электроны из n-области переходят в p- область, а на их месте остаются некомпенсированные заряды положительных ионов донорной примеси. Электроны, приходящие в р-область, рекомбинируют с дырами, и возникают некомпенсированные заряды отрицательных ионов акцепторной примеси. Ширина р n перехода составляет десятые доли микрона. На границе раздела возникает внутреннее электрическое поле р-n перехода, которое будет тормозящим для основных носителей заряда и будет их отбрасывать от границы раздела. Для неосновных носителей заряда поле будет ускоряющим, и перенесет их в область, где они станут основными. Максимум напряженности электрического поля будет наблюдаться на границе раздела. Распределение потенциала по ширине полупроводника называется потенциальной диаграммой. Разность потенциалов на р-n переходе называется контактной разностью потенциалов, или потенциальным барьером. Для того чтобы основной носитель заряда смог преодолеть р-n переход, его энергия должна быть достаточной для преодоления потенциального барьера.

Физические процессы: Область на границе двух полупроводников с различными типами электропроводности называется электронно-дырочным, или р-n-переходом.

Электронно-дырочный переход обладает свойством несимметричной проводимости, т. е. имеет нелинейное сопротивление. Работа большинства полупроводниковых приборов, применяемых в радиоэлектронике, основана на использовании свойств одного или нескольких р-n-переходов. Рассмотрим физические процессы в таком переходе.

Пусть внешнее напряжение на переходе отсутствует. Так как носители заряда в каждом полупроводнике совершают беспорядочное тепловое движение, т. е. имеются собственные скорости, то происходит их диффузия (проникновение) из одного полупроводника в другой. Носители перемещаются оттуда, где их концентрация велика, туда, где концентрация мала. Таким образом, из полупроводника п-типа в полупроводник р-типа диффундируют электроны, а в обратном направлении из полупроводника р-типа в полупроводник n-типа диффундируют дырки.

В результате диффузии носителей по обе стороны границы раздела двух полупроводников с различным типом электропроводности создаются объемные заряды различных знаков. В области n возникает положительный объемный заряд. Он образован главным образом положительно заряженными атомами донорной примеси и в небольшой степени пришедшими в эту область дырками. Подобно этому в области р возникает отрицательный объемный заряд, образованный отрицательно заряженными атомами акцепторной примеси и отчасти пришедшими сюда электронами.

Между образовавшимися объемными зарядами возникает так называемая контактная разность потенциалов и электрическое поле.

В р-n-переходе возникает потенциальный барьер, препятствующий диффузионному переходу носителей.

Чем больше концентрация примесей, тем выше концентрация основных носителей и тем большее количество их диффундирует через границу. Плотность объемных зарядов возрастает и увеличивается контактная разность потенциалов, т. е. высота потенциального барьера. При этом толщина р-n-перехода уменьшается.

Одновременно с диффузным перемещением основных носителей через границу происходит и обратное перемещение носителей под действием электрического поля контактной разности потенциалов. Это поле перемещает дырки из n-области обратно в р-область и электроны из р-области обратно в n-область. При определенной температуре р-n-переход находится в состоянии динамического равновесия. Каждую секунду через границу в противоположных направлениях диффундирует определенное количество электронов и дырок, а под действием поля такое же их количество дрейфует в обратном направлении.

Перемещение носителей за счет диффузии является диффузионным током, а движение носителей под действием поля представляет собой ток проводимости. При динамическом равновесии перехода эти токи равны и противоположны по направлению. Поэтому полный ток через переход равен нулю, что и должно быть при отсутствии внешнего напряжения. Каждый из токов имеет электронную и дырочную составляющие. Величины этих составляющих различны, так как они зависят от концентрации и подвижности носителей. Высота потенциального барьера всегда автоматически устанавливается именно такой, при которой наступает равновесие, т. е. диффузионный ток и ток проводимости взаимно компенсируют друг друга.

Тепловой пробой.

Тепловой пробой диода возникает вследствие перегрева перехода проходящим через него током при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

В режиме постоянного тока мощность, подводимая к переходу, определяется обратным напряжением и обратным током:Pподв=UоббIобр.

       Эта мощность идет на разогрев перехода, в результате чего температура перехода возрастает. При этом увеличиваются концентрации носителей заряда в p-n-структуре и обратный ток перехода, что в свою очередь приводит к увеличению подводимой мощности, новому повышению температуры перехода и т. д.

Выделяющееся тепло в переходе рассеивается преимущественно за счет теплопроводности, поэтому отводимая от перехода мощность пропорциональна разности температур перехода и окружающей среды:

Pотв=clip_image199          ,  где RT – общее тепловое сопротивление диода.

Возможны обратимые и необратимые пробои. Обратимый пробой – это пробой, после которого p-n-переход сохраняет работоспособность. Необратимый пробой ведет к разрушению структуры полупроводника.

Существуют четыре типа пробоя: лавинный, туннельный, тепловой и поверхностный. Лавинный и туннельный пробои объединятся под названием – электрический пробой, который является обратимым. К необратимым относят тепловой и поверхностный.

Электрический пробой.

Обычно длина свободного пробег электрона в полупроводнике значительно меньше толщины электронно-дырочного перехода. Если за время свободного пробега электроны успевают набрать достаточную энергию, то возникает ударная ионизация атомов электронами. В результате ударной ионизации наступает лавинное размножение носителей заряда.

Величина напряжения пробоя зависит от рода материала. Когда приложенное напряжение приближается к напряжению пробоя, коэффициент размножения носителей резко возрастает, растет число носителей заряда в переходе, сильно увеличивается ток через переход, наступает лавинный пробой.

При значительных напряженностях электрического поля (порядка 200 кВ/см), возможен туннельный пробой, обусловленный прямым переходом электронов из валентной зоны в зону проводимости смежной области, происходящим без изменения энергии электрона.

Практически при электрическом пробое могут иметь место в той или иной степени одновременно оба вида пробоя – туннельный и лавинный.

Величина напряжения пробоя существенно зависит от состояния поверхности перехода, где могут образовываться заряды того или иного знака, которые уменьшают или увеличивают результирующую напряженность поля у поверхности по сравнению ее значением в объеме. В неблагоприятном напряжении пробоя по поверхности может быть в несколько раз ниже, чем по объему. Это еще раз подчеркивает важность стабилизации свойств поверхности полупроводника, защиты ее от воздействий окружающей среды.

 


Диоды, тиристоры. Устройство, принцип работы, ВАХ, область применения

Диод — от окончания -од термина электрод; букв. «двухэлектродный»; корень — двухэлектродный электронный элемент, обладающий различной проводимостью в зависимости от направления электрического тока. Устройство и принцип действия - электрод диода, подключаемый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключаемый к отрицательному полюсу — катодом.

Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий). Диоды в сочетании с конденсаторами применяются для выделения низкочастотной модуляции из амплитудно-модулированного радиосигнала или других модулированных сигналов. Диоды применяются для защиты устройств от неправильной полярности включения, защиты входов схем от перегрузки, защиты ключей от пробоя ЭДС самоиндукции, возникающей при выключении индуктивной нагрузки и т. п.

Применение: Диодные выпрямители - основной компонент блоков питания практически всех электронных устройств, Диодные детекторы - применяются в радиоприёмных устройствах: радиоприёмниках, телевизорах и т. п. Используется квадратичный участок вольт-амперной характеристики диода, диодная защита -  для защиты входов аналоговых и цифровых схем от перегрузки используется цепочка из двух диодов, подключенных к шинам питания в обратном направлении, защищаемый вход подключается к средней точке этой цепочки, Диодные переключатели – применяются для коммутации высокочастотных сигналов. Управление осуществляется постоянным током, разделение ВЧ и управляющего сигнала с помощью конденсаторов и индуктивностей, диодная искрозащита - этим не исчерпывается применение диодов в электронике, однако другие схемы, как правило, весьма узкоспециальны. Совершенно другую область применимости имеют специальные диоды, поэтому они будут рассмотрены в отдельных статьях.

Тиристор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.

Основная схема тиристорной структуры показана на рис. 1. clip_image201 Она представляет собой четырёхслойный полупроводник структуры p-n-p-n, содержащий три последовательно соединённых p-n-перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою — катодом. В общем случае p-n-p-n-прибор может иметь до двух управляющих электродов (баз), присоединённых к внутренним слоям. Подачей сигнала на управляющий электрод производится управление тиристором (изменение его состояния). Прибор без управляющих электродов называется диодным тиристором или динистором. Такие приборы управляются напряжением, приложенным между основными электродами. Прибор с одним управляющим электродом называют триодным тиристором или тринистором (иногда просто тиристором, хотя это не совсем правильно). В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду. Наиболее распространены последние.

Описанные выше приборы бывают двух разновидностей: пропускающие ток в одном направлении (от анода к катоду) и пропускающие ток в обоих направлениях. В последнем случае соответствующие приборы называются симметричными (так как их ВАХ симметрична) и обычно имеют пятислойную структуру полупроводника. Симметричный тринистор называется также симистором или триаком. Следует заметить, что вместо симметричных динисторов, часто применяются их интегральные аналоги, обладающие лучшими параметрами.

Вольт-ампе́рная характери́стика (ВАХ) — график зависимости тока, проходящего через двухполюсник, от напряжения на этом двухполюснике. Вольт-амперная характеристика описывает поведение двухполюсника на постоянном токе. Чаще всего рассматривают ВАХ нелинейных элементов (степень нелинейности определяется коэффициентом нелинейности β=clip_image203clip_image205), поскольку для линейных элементов ВАХ представляет собой прямую линию (описывающуюся законом Ома) и не представляет особого интереса.

Характерные примеры элементов, обладающих существенно нелинейной ВАХ: диод, тиристор, стабилитрон.

Для трёхполюсных элементов (таких, как транзистор, тиристор или ламповый триод) часто строят семейства кривых, являющимися ВАХ для двухполюсника при так или иначе заданных параметрах на третьем выводе элемента.

Необходимо отметить, что в реальной схеме, особенно работающей с относительно высокими частотами (близкими к границам рабочего частотного диапазона) для данного устройства реальная зависимость напряжения от времени может пробегать по траекториям, весьма далёким от «идеальной» ВАХ. Чаще всего это связано с ёмкостью или другими инерционными свойствами элемента.

Полезно отметить некоторые свойства вольт-амперных характеристик составных элементов (схем, состоящих из нескольких двухполюсников).

Параллельное соединение — при параллельном соединении двух двухполюсников, при каждом значении напряжения складываются токи, текущие через них, а при последовательном — для каждого значения тока складываются напряжения на элементах.

 


Транзисторы. Устройство, схемы включения с ОБ, ОЭ, ОК. Основные характеристики

Транзистор (полупроводниковый триод) — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналом управлять током в электрической цепи. Обычно используется для усиления, генерации и преобразования электрических сигналов. В общем случае транзистором называют любое устройство, которое имитирует главное свойство транзистора - изменения сигнала между двумя различными состояниями при изменении сигнала на управляющем электроде.

clip_image207 Структура биполярного n-p-n транзистора. Ток через базу управляет током «коллектор-эмиттер».

Схемы включения транзистора: Для включения в схему транзистор должен иметь четыре вывода - два входных и два выходных. Но транзисторы всех разновидностей имеют только три вывода. Для включения трёхвыводного прибора необходимо один из выводов объединить и поскольку таких комбинаций может только три, то существуют три базовых схем включения транзистора: Схемы включения биполярного транзистора

1)     с общим эмиттером (ОЭ) — осуществляет усиление как по току, так и по напряжению — наиболее часто применяемая схема;

2)    с общим коллектором (ОК) — осуществляет усиление только по току — применяется для согласования высокоимпедансных источников сигнала с низкоомными сопротивлениями нагрузок;

3)    с общей базой (ОБ) — усиление только по напряжению, в силу своих недостатков в однотранзисторных каскадах усиления применяется редко (в основном в усилителях СВЧ), обычно в составных схемах (например, каскодных).

Характеристики: Транзисторы BISS (Breakthrough in Small Signal, дословно — «прорыв в малом сигнале») — биполярные транзисторы с улучшенными малосигнальными параметрами. Существенное улучшение параметров транзисторов BISS достигнуто за счёт изменения конструкции зоны эмиттера. Первые разработки этого класса устройств также носили наименование «микротоковые приборы».

Транзисторы со встроенными резисторами RET (Resistor-equipped transistors) — биполярные транзисторы со встроенными в один корпус резисторами. RET транзистор общего назначения со встроенным одним или двумя резисторами. Такая конструкция транзистора позволяет сократить количество навесных компонентов и минимизирует необходимую площадь монтажа. RET транзисторы применяются для контроля входного сигнала микросхем или для переключения меньшей нагрузки на светодиоды.

Применение гетероперехода позволяет создавать высокоскоростные и высокочастотные полевые транзисторы, такие как HEMT.

 


Основные логические операции и их реализация на базе ИМС. Логические элементы ИЛИ, И, НЕ, И-НЕ, ИЛИ-НЕ. Таблицы истинности, логические функции

Логическими сообщениями называются такие сообщения, истинность или ложность которых может быть оценена однозначно. Логический элемент (вентиль) - часть электронной схемы, которая выполняет элементарную логическую операцию.

Каждый логический элемент имеет свое условное обозначение, имеет один или несколько входов, на которые попадаются сигналы "высокого" напряжения ("1") и "низкого" напряжения("0"), и только один выход.

Рассмотрим основные параметры логических ИМС:

1)    Рпот — мощность, потребляемая ИМС от источника питания;

2)    предельный входной ток при сигнале 0 на входе;

3)    предельный входной ток при сигнале 1 на входе;

4)    минимальное выходное напряжение при логической 1 на выходе;

5)    максимальное выходное напряжение при сигнале 0 на выходе;

6)    коэффициент разветвления, показывает, сколько ИМС той же серии можно подключить к выходу элемента;

7)    коэффициент объединения входов, показывает количество входов (например, элементs могут иметь  от 2 до 8 входов, т.е. );

8)    максимальное допустимое напряжение помехи, которое не вызывает ложных срабатываний элемента;

9)    параметры, характеризующие задержку при  элемента из состояния 0 в 1 и наоборот.

Логические ИМС выпускаются промышленностью в виде серий (наборов) элементов, которые обеспечивают выполнение множества логических функций, при этом обеспечивают хорошие условия согласования выхода логической ИМС со входом другой логической ИМС той же серии. В основу каждой серии кладется схемное решение основного логического элемента, на основе которого создаются более сложные схемы.

Логические схемы являются разновидностью импульсных устройств. Их особенностью является то, что они функционируют только при прямоугольных импульсах, амплитуда которых поддерживается выше. Логических элементов НЕ, ИЛИ, И могут быть построены на различных полупроводниковых приборах и ИМС, а также на гидравлических или пневматических элементах. Технико-экономические преимущества ИМС обусловили то, что в настоящее время для реализации логических операций используются почти исключительно устройства, выполненные на ИМС. Логические ИМС базируются на нескольких схемных решениях, т. е. на нескольких типах логики. В качестве основных чаще всего выбираются элементы ИЛИ—НЕ и в особенности И—НЕ.

Таблица истинности элемента ИЛИ-НЕ:

А

B

F=A+B

0

0

1

0

1

0

1

0

0

1

1

0

Таблица истинности элемента И—НЕ:

A

B

F=AB

0

0

1

0

1

1

1

0

1

1

1

0

 

Отрицание (инверсия), от латинского inversio -переворачиваю:

1)    соответствует частице НЕ, словосочетанию НЕВЕРНО, ЧТО;

2)    обозначение: не A, A, -A;

3)    таблица истинности: 

А

0

1

1

0

Инверсия логической переменной истинна, если сама переменная ложна, и, наоборот, инверсия ложна, если переменная истинна.

Логическое сложение (дизъюнкция), от латинского disjunctio - различаю:

1)    соответствует союзу ИЛИ;

2)    обозначение: +, или,  or, V;

3)    таблица истинности:

А

В

F

0

0

0

0

1

1

1

0

1

1

1

1

Дизъюнкция ложна тогда и только тогда, когда оба высказывания ложны.

Логическое умножение (конъюкция), от латинского conjunctio -связываю:

1)    соответствует союзу И

2)    (в естественном языке: и А, и В

                           как А, так и В

                           А вместе с В

                           А, не смотря на В                                                    

                           А, в то время как В);

3)    обозначение: Ч, •, &, и, ^, and;                                                  

4)    таблица истинности:

A

B

F

0

0

0

0

1

0

1

0

0

1

1

1

Конъюкция истинна тогда и только тогда, когда оба высказывания истинны.

Любое сложное высказывание можно записать с помощью основных логических операций И, ИЛИ , НЕ.

С помощью логических схем И, ИЛИ, НЕ можно реализовать логическую функцию, описывающую работу различных устройств компьютера.

 


Триггеры. Общие понятия. Назначения входов и выходов. Асинхронные и синхронные, однотактные и двухтактные

Триггер (триггерная система) — класс электронных устройств, обладающих способностью длительно находиться в одном из двух устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения. По характеру действия триггеры относятся к импульсным устройствам — их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.

Триггер (бистабильный мультивибратор) — это цифровой автомат, имеющий несколько входов и 2 выхода.

Триггер — это устройство последовательностного типа с двумя устойчивыми состояниями равновесия, предназначенное для записи и хранения информации. Под действием входных сигналов триггер может переключаться из одного устойчивого состояния в другое. При этом напряжение на его выходе скачкообразно изменяется.

Триггерами называют такие логические устройства, выходные сигналы которых определяются не только сигналами на входах, но и предысторией их работы, то есть состоянием элементов памяти.

Триггер — один из базовых (основных) элементов цифровой техники. Некоторые исследователи включают триггер в 100 великих изобретений.

Триггер не является логическим элементом первого уровня, а сам состоит из логических элементов первого уровня — инверторов илилогических вентилей. По отношению к логическим элементам первого уровня триггер является логическим устройством второго уровня.

Триггер — элементарная ячейка оперативной памяти.

Триггер — простейшее устройство, выполняющее логическую функцию с обратной связью, то есть простейшее устройство кибернетики.

N-ичный триггер — устройство (элементарная переключаемая ячейка памяти, переключатель с N устойчивыми положениями), которое имеет N устойчивых состояний и возможность переключения из любого состояния в любое другое состояние.

Триггер - это логическое устройство с двумя устойчивыми состояниями 0 и 1, имеющие несколько входов и два выхода, один прямой, а другой инверсный.

Простейший триггер имеет 2 входа и 2 выхода.

Триггер имеет два выхода: прямой Q и инверсный . Уровнями напряжения на этих выходах определяется состояние, в котором находится триггер: если напряжение на выходе Q соответствует уровню лог. 0 (Q = 0), то принимается, что триггер находится в состоянии лог. 0, при Q = 1 триггер находится в состоянии лог. 1. Логический уровень на инверсном выходе представляет собой инверсию состояния триггера (в состоянии 0 Q = 1 и наоборот).

Триггеры имеют различные типы входов. Приведем обозначение и назначение входов триггеров:

R (от английского RESET) - раздельный вход установки в состояние 0;

S (от английского SET) - раздельный вход установки в состояние 1;

K - вход установки универсального триггера в состояние 0;

J - вход установки универсального триггера в состояние 1;

T - счетный вход;

D (от английского DELAY) - информационный вход установки триггера в состояние, соответствующее логическому уровню на этом входе;

C - управляющий (синхронизирующий) вход.

Наименование триггера определяется типами его входов. Например, RS-триггер - триггер, имеющий входы типов R и S.

По характеру реакции на входные сигналы триггеры делятся на два типа: асинхронные и синхронные. Асинхронный триггер характеризуется тем, что входные сигналы действуют на состояние триггера непосредственно с момента их подачи на входы, в синхронных триггерах - только при подаче синхронизирующего сигнала на управляющий вход С.

Асинхронный триггер изменяет своё состояние непосредственно в момент появления соответствующего информационного сигнала(ов), с некоторой задержкой равной сумме задержек на элементах, составляющих данный триггер.

Синхронные триггеры реагируют на информационные сигналы только при наличии соответствующего сигнала на так называемом входе синхронизации С (от англ. clock). Этот вход также обозначают термином «такт». Такие информационные сигналы называют синхронными. Синхронные триггеры в свою очередь подразделяют на триггеры со статическим и с динамическим управлением по входу синхронизации С. Одноступенчатые триггеры (latch, защёлки) состоят из одной ступени представляющей собой элемент памяти и схему управления, бывают, как правило, со статическим управлением. Одноступенчатые триггеры с динамическим управлением применяются в первой ступени двухступенчатых триггеров с динамическим управлением. Одноступенчатый триггер на УГО обозначают одной буквой - Т.

Двухступенчатые триггеры (flip-flop, шлёпающие) делятся на триггеры со статическим управлением и триггеры с динамическим управлением. При одном уровне сигнала на входе С информация, в соответствии с логикой работы триггера, записывается в первую ступень (вторая ступень заблокирована для записи). При другом уровне этого сигнала происходит копирование состояния первой ступени во вторую (первая ступень заблокирована для записи), выходной сигнал появляется в этот момент времени с задержкой равной задержке срабатывания ступени. Обычно двухступенчатые триггеры применяются в схемах, где логические функции входов триггера зависят от его выходов, во избежание временных гонок. Двухступенчатый триггер на УГО обозначают двумя буквами - ТТ.

 


Однофазные неуправляемые выпрямители: однополупериодный, двухполупериодный с выводом средней точки трансформатора, мостовой

Выпрямительные устройства относятся ко вторичным источникам электропитания, для которых первичным источником являются сети переменного тока. Выпрямитель - это устройство, которое преобразует переменное напряжение питающей сети в однонаправленное пульсирующее. Именно однонаправленное пульсирующее и назвать его постоянным немного некорректно. Существует и несколько иное определение: выпрямитель предназначен для преобразования переменного напряжения в импульсное напряжение одной полярности.

Наиболее часто в выпрямителях применяются полупроводниковые диоды. Принцип выпрямления переменного напряжения основан на нелинейной ВАХ полупроводникового диода, у которого сопротивление в прямом и обратном включении p-n-перехода сильно отличаются.

Выпрямители могут быть однополупериодные и двуполупериодные. К тому же они разделяются на однофазные и многофазные.

Итак, начнем с однофазного однополупериодного выпрямителя на полупроводниковом диоде.

clip_image209clip_image211

Рис. 1 - Схема однофазного однополупериодного выпрямителя и графики, поясняющие принцип ее работы.

Схема однополупериодного выпрямителя до боли проста и объяснять тут нечего. Для наглядности положительные и отрицательные полуволны показаны разными цветами. Поскольку диод обладает свойствами односторонней проводимости, на выходе получается пульсирующее напряжение одной полярности. Для схемы характерны следующие параметры:

Среднее значение выпрямленного напряжения:  Uср=clip_image213bxsinωtdωt ≈ 0.45Ubx

Действующее значение входного напряжения: Ubx=clip_image215≈2.22Uср

Среднее значение выпрямленного тока: Iср=clip_image217 

Действующее значение тока во вторичной обмотке трансформатора:

I2=clip_image219=clip_image221≈1.57Iср

Коэффициент пульсаций p=clip_image223=clip_image225 

К достоинствам схемы можно отнести простоту конструкции. Недостатки - большие пульсации, малые значения выпрямленного тока и напряжения, низкий КПД. Применяется такая схема для питания низкоомных нагрузок, некритичных к высоким пульсациям.

1.     Схема выпрямления с выводом от средней точки трансформатора.

clip_image226 clip_image228

Рис. 2 - Схема двуполупериодного выпрямителя с выводом от средней точки и графики, поясняющие принцип ее работы

Пунктиром показано напряжение на входе второго диода. Как видно из графиков, во время первого полупериода первый диод открыт и на нагрузке создается падение напряжения. Во время второго полупериода первый диод закрывается, поскольку оказывается включенным в обратном направлении, а второй, наоборот, открывается и на нагрузке снова выделяется положительная полуволна. На схеме плюсиками и минусами обозначено действие полуволн переменного тока. Частота пульсаций двуполупериодного выпрямителя вдвое больше, что является его достоинством. Для такой схемы характерны следующие параметры: Uср = 0.9Uвх

Uвх = 1.11Uср

Iср = 0.9Uвх/Rн

I2 = 0.78Iср

          p = 0.67

Достоинства: удвоенные значения Uср и Iср, вдвое меньший коэффициент пульсаций по сравнению с однополупериодной схемой. Недостатки: наличие трансформатора с двумя симметричными обмотками (что увеличивает его массогабаритные показатели). К тому же на диодах удвоенное обратное напряжение.

2.     Мостовая схема

clip_image230

Рис. 3 - Мостовая схема выпрямления

Параметры такие же, как и двухполупериодной схемы со средним выводом, кроме обратного напряжения (оно в два раза меньше). Положительная полуволна (с верхнего по схеме вывода трансформатора) проходит через диод VD2, затем через нагрузку, затем через VD3 ко второму выводу трансформатора. При смене направления тока работают диоды VD4, VD1. Недостатком схемы считается удвоенное число диодов.

 


Трехфазные выпрямители: нулевой, мостовой

Трёхфазный выпрямитель — устройство применяемое для получения постоянного тока из трёхфазного переменного тока системы Доливо-Добровольского.

Наиболее простым и надежным является трехфазный нулевой выпрямитель. В связи с тем что на вторичной стороне трансформатора выпрямляются полуволны напряжения одной полярности, достаточно на первичной стороне трансформатора управлять полуволнами напряжения также только одной полярности. Схема трехфазного нулевого выпрямителя с однотактным вентильным управлением на первичной стороне трансформатора приведена на рис. 1 clip_image232. Первичная обмотка трехфазного трехстержневого трансформатора соединена треугольником с включением в каждую фазу по одному управляемому вентилю. Управляемые вентили отпираются поочередно через 120° соответственно периодичности выпрямленного напряжения при т=3.

clip_image234

Рисунок 2

При включении управляемого вентиля к соответствующей фазе первичной обмотки подводится полуволна линейного напряжения сети, которая трансформируется на вторичную сторону и через неуправляемые вентили данной фазы подводится к цепи сварочного контура. Продолжительность проводимости вентилей каждой фазы на вторичной стороне трансформатора составляет 2π/3+γ, где γ — угол коммутации при передаче выпрямленного тока с фазы на фазу.

Диаграммы токов и напряжений в элементах схемы выпрямителя при условии пренебрежения падением напряжения на вентилях, намагничивающей составляющей фазных токов трансформатора и пульсациями выпрямленного тока приведены на рис. 2. При этом угол фазового регулирования α=0. Диаграммы для шестифазных выпрямителей, рассматриваемые ниже, соответствуют этим же условиям. На оси 1 даны линейные напряжения сети иАB, иВC, Uca и выпрямленное напряжение ud на оси 2 — вторичные фазные токи i2a, i2b, i2c (токи неуправляемых вентилей) и первичные фазные токи i1a, i1b, i1c (токи управляемых вентилей, которые на рис. 2 не обозначены, так как по форме подобны вторичным фазным токам); на осях 3, 4, 5 — линейные токи сети iA, iB, iC. Несмотря на униполярный характер первичных фазных токов, магнитопровод трехфазного трансформатора перемагничивается за период напряжения сети. Это связано с тем, что изменения магнитного потока в каждом стержне магнитопровода при работе «своей» фазы и поочередной работе двух других фаз противоположны по знаку.

Однофазная мостовая схема выпрямления (рис.  а) содержит четыре диода V1—V4, соединенных по схеме моста и подключенных к сети переменного тока через трансформатор Т или напрямую. Трансформатор позволяет согласовать напряжение сети и выпрямленное напряжение нагрузки. В одну диагональ моста (точки 1 и 3) включен источник переменного напряжения, а в другую (точки 2 и 4) — нагрузка Rн. Общая точка 2 катодных выводов служит положительным полюсом выпрямителя, а точка 4 анодных выводов — отрицательным. В однофазной мостовой схеме диоды работают поочередно парами V1 , V3 и V2, V4 (рис. 5.6, б). В положительный полупериод напряжения и2ф ток проходит через диод V1 нагрузку Rн к диоду V3.

clip_image236

Рис. 5.6  Однофазная мостовая схема выпрямления (а). Графики напряжений и тока в трансформаторе ( б), напряжения и тока в нагрузке (в)

Так как в это время диоды V2, V4 закрыты, к ним прикладывается обратное напряжение, наибольшее значение которого л/2 и 2ф. В отрицательный полупериод ток проходит через диод V2, нагрузку Rн к диоду V4. При этом обратное напряжение прикладывается к диодам V1 и V3. Таким образом, ток в цепи нагрузки в каждый период проходит в одном направлении, и его среднее значение зависит от выпрямленного напряжения и сопротивления нагрузки.

 Выпрямленное напряжение Ud (рис. в) имеет постоянную составляющую Ud ср и переменную составляющую Ud„ (заштрихованная область), которая пульсирует с двукратной частотой по отношению к частоте сети. Чем меньше переменная составляющая, тем меньше пульсации. При идеальном преобразовании переменного тока в постоянный переменная составляющая равна нулю. Важным показателем работы выпрямителя служит отношение амплитуды переменной составляющей к выпрямленному напряжению, называемое коэффициентом пульсации выпрямленного напряжения: q= clip_image238 = 2/(m2 — 1),

 где m — число фаз источника.

Однофазные мостовые схемы из-за больших пульсаций выпрямленного напряжения применяют в основном в электроустановках малой мощности.

 


Фильтры(C, L, LC, RC), коэффициент пульсаций

Фильтром называется четырехполюсник, содержащий реактивные компоненты, которые либо задерживают, либо пропускают к нагрузке токи (напряжения) одного или нескольких заданных диапазонов частот.

В основе принципа действия фильтра лежит зависимость полного эквивалентного сопротивления от частоты. Наибольшее распространение в маломощных выпрямителях нашли сглаживающие фильтры: L, LC, C и RC (рис.6). Важнейшим параметром сглаживающего фильтра является коэффициент сглаживания (S), который показывает, во сколько раз фильтр уменьшает пульсации (clip_image240, для фильтра L: clip_image242, для LC-фильтра:clip_image244 ,

где w -частота сигнала на выходе выпрямителя). На выходе фильтра напряжение оказывается хорошо сглаженным.

clip_image246

L-фильтр LC-фильтр С-фильр RC-фильтр

Рис. 6 Схема фильтров.

Для построения фильтров в радиоаппаратуре используется независимость от частоты (в определенном частотном диапазоне) сопротивления R и зависимость от частоты реактивного сопротивления  L, С для RC и LC цепочек.

Как уже было сказано выше в фильтрах используется зависимость полного сопротивления элементов цепочки от частоты и в общем виде описывается выражением.

Сглаживающие RС-фильтры

Фильтры используются для сглаживания пульсаций выпрямленного напряжения. Простейшим фильтром является конденсатор большой емкости, подключаемый к выходу выпрямителя. Обычно в качестве такового используют оксидные (электролитические) конденсаторы емкостью от нескольких десятков до нескольких тысяч микрофарад.

     Однако степень сглаживания пульсаций выпрямленного напряжения емкостным фильтром при больших токах нагрузки оказывается недостаточной.

     Для повышения уровня сглаживания пульсаций выпрямленного напряжения к выходу выпрямителя подключают более сложные фильтры, в состав которых помимо конденсаторов входят резисторы, дроссели, электронные лампы или транзисторы. Чтобы определить, какой фильтр лучше, вводят специальный параметр — коэффициент сглаживания. Он рассчитывается как отношение коэффициента пульсаций на выходе фильтра (Крвых) к коэффициенту пульсаций на его входе (Крвх):

 Кс = Крвых/Крвх

     Наиболее простым является Г-образный реостатно-емкостный фильтр, состоящий из резистора R1 и конденсатора Сф1

clip_image247

На рисунке показан также конденсатор С1, включенный на выходе выпрямителя. О назначении этого конденсатора сказано в предыдущем параграфе.

     Резистор R1 и конденсатор Сф1 образуют делитель напряжения пульсаций, возникающих на выходе выпрямителя (конденсатора С1). Во сколько раз сопротивление конденсатора Сф1 меньше сопротивления резистора R1 току пульсаций, во столько же раз напряжение пульсаций на конденсаторе Сф1 будет меньше, чем напряжение пульсаций на конденсаторе С1.

    Уменьшить напряжение пульсаций на нагрузке при заданной емкости конденсатора Сф1 можно путем увеличения сопротивления резистора R1. Но поскольку через R1 протекает постоянная составляющая выпрямленного тока, на резисторе теряется часть выпрямленного напряжения, и напряжение на нагрузке (на конденсаторе Сф1) оказывается меньше, чем напряжение на выходе выпрямителя (на конденсаторе С1).

     Если коэффициент сглаживания однозвенного RС-фильтра недостаточен,  т. е. амплитуда пульсаций в выпрямленном напряжении слишком велика, применяют двухзвенный RС -фильтр. В таком фильтре общий коэффициент сглаживания равен произведению коэффициентов сглаживания отдельных звеньев R1CФ1 и R2CФ2.

Сглаживающие LC-фильтры

Для увеличения КПД и уменьшения потерь выпрямленного напряжения на элементах фильтра широко применяются индуктивно-емкостные (LC) фильтры. На рисунке изображен однозвенный Г-образный LC-фильтр, состоящий из дросселя Др1 и конденсатора Сф1.

clip_image249

Этот фильтр отличается от однозвенного RС -фильтра тем, что резистор R1 заменен дросселем Др1. Дроссель обладает большим сопротивлением переменному току и малым сопротивлением постоянному току. В результате напряжение пульсаций, имеющихся на выходе выпрямителя, перераспределяется на делителе Др1Сф1 таким образом, что основная его часть падает на дросселе и несущественная — на конденсаторе Сф1. В то же время из-за малого сопротивления дросселя постоянному току напряжение на выходе фильтра будет мало отличаться от напряжения на выходе выпрямителя, т. е. КПД LC-фильтра оказывается выше, чем КПД RС -фильтра.

 Для увеличения коэффициента сглаживания можно последовательно с одним звеном LC-фильтра включить точно такое же второе звено.

   Уменьшить напряжение пульсаций на выходе однозвенного LC-фильтра можно также, если параллельно дросселю Др1 включить бумажный конденсатор С2, который вместе с индуктивностью дросселя Др1 образует параллельный колебательный контур. Сопротивление контура на резонансной частоте значительно выше сопротивления дросселя. Поэтому, если емкость конденсатора С2 выбрать такой, чтобы резонансная частота контура С2Др1 равнялась частоте пульсаций (50 Гц при однополупериодном выпрямлении или 100 Гц при двухполупериодном выпрямлении), большая часть напряжения пульсаций выделится в этом контуре и незначительная пойдет в нагрузку.

 


Однофазные и трехфазные управляемые выпрямители

Выпрямитель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.

Простейшая схема однополупериодного выпрямителя состоит только из одного выпрямляющего ток элемента (диода). На выходе — пульсирующий постоянный ток. На промышленных частотах (50—60 Гц) не имеет широкого применения, так как для питания аппаратуры требуются сглаживающие фильтры с большими величинами емкости и индуктивности, что приводит к увеличению габаритно-весовых характеристик выпрямителя. Однако схема однополупериодного выпрямления нашла очень широкое распространение в импульсных блоках питания с частотой переменного напряжения свыше 10 КГц, широко применяющихся в современной бытовой и промышленной аппаратуре. Объясняется это тем, что при более высоких частотах пульсаций выпрямленного напряжения, для получения требуемых характеристик (заданного или допустимого коэффициента пульсаций), необходимы сглаживающие элементы с меньшими значениями емкости (индуктивности). Вес и размеры источников питания уменьшаются с повышением частоты входного переменного напряжения.

Однополупериодный выпрямитель или четвертьмост является простейшим выпрямителем и включает в себя один вентиль (диод или тиристор).

Допущения: нагрузка чисто активная, вентиль — идеальный электрический ключ.

Напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт, всё падение напряжения происходит на вентиле, а напряжение на нагрузке Uн равно нулю.

US=clip_image2512sin(ωt)d(ωt)=clip_image253U2 Эта величина вдвое меньше, чем в полномостовом.

Недостатки:

1)                Большая величина пульсаций

2)                Сильная нагрузка на вентиль (требуется диод с большим средним выпрямленным током)

3)                Низкий коэффициент использования габаритной мощности трансформатора (около 0,45) (не путать с КПД, который зависит от потерь в меди и потерь в стали и в однополупериодном выпрямителе почти такой же, как и в двухполупериодном).

Преимущество: экономия на количестве вентилей.

Наиболее распространены трёхфазные выпрямители по схеме Миткевича В. Ф. (на трёх диодах, предложена им в 1901 г.) и по схеме Ларионова А. Н. (на шести диодах, предложена в 1923 г.). Выпрямитель по схеме Миткевича является четвертьмостовым параллельным, по схеме Ларионова — полумостовым параллельным.

Три четвертьмоста параллельно (схема Миткевича)

clip_image255 clip_image256

(«Частично трёхполупериодный со средней точкой»). Площадь под интегральной кривой равна:   clip_image258

Средняя ЭДС равна: clip_image260

На холостом ходу и близких к нему режимах ЭДС в ветви с наибольшей на данном отрезке периода обратносмещает (закрывает) диоды в ветвях с меньшей на данном отрезке периода ЭДС и относительное эквивалентное активное сопротивление равно сопротивлению одной ветви 3r.  При увеличении нагрузки (уменьшении Rn ) появляются и увеличиваются отрезки периода на которых обе ветви работают на одну нагрузку параллельно и относительное эквивалентное активное сопротивление на этих отрезках равно  3r/2. В режиме короткого замыкания эти отрезки максимальны, но полезная мощность в этом режиме равна нулю.

Частота пульсаций равна 3f, где f — частота сети.

Три полумоста параллельно, объединённые кольцом/треугольником («треугольник-Ларионов»)

Вид ЭДС на входе (точками) и на выходе (сплошной)

В некоторой электротехнической литературе иногда не различают схемы «треугольник-Ларионов» и «звезда-Ларионов», которые имеют разные значения среднего выпрямленного напряжения, максимального тока, эквивалентного активного внутреннего сопротивления и др.

В выпрямителе "треугольник-Ларионов" потери в меди больше, чем в выпрямителе «звезда-Ларионов», поэтому на практике чаще применяется схема «звезда-Ларионов».

Кроме этого, выпрямители Ларионова А.Н. часто называют мостовыми, на самом деле они являются полумостовыми параллельными.

В некоторой литературе выпрямители Ларионова и подобные называют «полноволновыми» (англ. full wave), на самом деле полноволновыми являются выпрямитель «три последовательных моста» и подобные.

clip_image262 clip_image263

Площадь под интегральной кривой равна: clip_image265

Средняя ЭДС равна: clip_image267, то есть больше, чем в выпрямителе Миткевича.

В работе схемы «треугольник-Ларионов» есть два периода. Большой период равен 360° (clip_image268). Малый период равен 60° (clip_image269), и повторяется внутри большого 6 раз. Малый период состоит из двух малых полупериодов по 30° (), которые зеркальносимметричны и поэтому достаточно разобрать работу схемы на одном малом полупериоде в 30°.

На холостом ходу и в режимах близких к нему ЭДС в ветви с наибольшей на данном отрезке периода обратносмещает (закрывает) диоды с меньшими на данном отрезке периода ЭДС.

В начальный момент (clip_image270) ЭДС в одной из ветвей равна нулю, а ЭДС в двух других ветвях равны 0,86*Em, при этом открыты два верхних диода и один нижний диод. Эквивалентная схема представляет собой две параллельные ветви с одинаковыми ЭДС (0,86) и одинаковыми сопротивлениями по 3*r каждое, эквивалентное сопротивление обеих ветвей равно 3*r/2. Далее, на малом полупериоде, одна из двух ЭДС, равных 0,86, растёт до 1,0, другая уменьшается до 0,5, а третья растёт от 0,0 до 0,5. Один из двух открытых верхних диодов закрывается, и эквивалентная схема является параллельным включением двух ветвей, в одной из которых большая ЭДС и её сопротивление равно 3*r, в другой ветви образуется последовательное включение двух меньших ЭДС, и её сопротивление равно 2*3*r=6*r, эквивалентное сопротивление обеих ветвей равно clip_image272

Частота пульсаций равна 6f, где f — частота сети. Абсолютная амплитуда пульсаций равна clip_image274.

Относительная амплитуда пульсаций равна clip_image276.

 

Last Updated on Sunday, 24 January 2016 04:34