Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Ответы к экзаменам по курсу гидравлика - Коэффициенты сжимаемости

Cмотрите так же...
Ответы к экзаменам по курсу гидравлика
Гипотеза сплошности
Давление: абсолютное, избыточное, вакуумное
Плотность
Уравнение состояния
Коэффициенты сжимаемости
Равновесие несжимаемой жидкости в поле силы тяжести
Свойства гидростатического давления
Основное уравнение гидростатики для капельных жидкостей и газов
Примеры применения основных уравнений гидростатики
Единицы измерения давления
Понятие центра давления
Основные задачи и методы гидродинамики
Потоки напорный и безнапорный, гидравлические струи
Общие сведения о гидравлических сопротивлениях
Виды гидравлических сопротивлений
Связь между средней и осевой скоростями
Потери напора на трение по длине потока
Формула Пуазейля
Турбулентное движение жидкости
Коэффициент гидравлического сопротивления при турбулентном течении
Основные расчетные формулы
Определение и виды местных сопротивлений
Формула Вейсбаха
Эквивалентная длина
Типы трубопроводов
Особенности расчета трубопроводов, работающих под вакуумом
Расчет трубопровода из труб с переменным сечением
Истечение жидкости из отверстий и насадков
Коэффициенты сжатия, скорости и расхода
Потери в отверстиях и насадках
Гидравлический удар в трубах
All Pages

Коэффициенты сжимаемости.

коэффициент сжимаемости жидкости:

где A – некоторая функция, возрастающая с температурой, p – внешнее давление и pT – давление, связанное с силами Ван-дер-Ваальса (a/V2) при температуре T.

Эта формула показывает, что коэффициент сжимаемости растет с повышением температуры и уменьшается с ростом давления. Среди всех жидкостей наибольшей сжимаемостью обладает жидкий гелий, у которого при давлении в несколько атмосфер коэффициент c равен clip_image037. Коэффициент сжимаемости воды равен clip_image038, а ртути –clip_image039clip_image040.

βp= - 1/V0 * ∆V/∆p ; β – коэф. сжимаемости.

V=V0(1 – βp∆p) – для капельных жидкостей (несжимаемые жидкости);

K=1/βp – модуль объемных жидкостей .

βt=1/V0 * ∆V/∆t .

Давление в покоящейся жидкости

В покоящейся жидкости всегда присутствует сила давления, которая называется гидростатическим давлением. Жидкость оказывает силовое воздействие на дно и стенки сосуда. Частицы жидкости, расположенные в верхних слоях водоема, испытывают меньшие силы сжатия, чем частицы жидкости, находящиеся у дна.

Рассмотрим резервуар с плоскими вертикальными стенками, наполненный жидкостью (рис.2.1, а). На дно резервуара действует сила P равная весу налитой жидкости G = γ V, т.е. P = G.

Если эту силу P разделить на площадь дна Sabcd, то мы получим среднее гидростатическое давление, действующее на дно резервуара. clip_image042

Дифференциальное уравнение гидростатики (Ур-е Эйлера)

Продолжая рассмотрение вопроса о давлении в покоящейся жидкости, мысленно выделим в ней элементарный параллелепипед с ребрами dx, dy, dz, параллельными соответствующим осям прямоугольных координат (рис. 2.2) и обозначим через р давление точке М — центр параллелепипеда.

Пусть в точках «а» и «b» граней параллелепипеда, параллельных координатной плоскости xOz, действуют давления р1 и p2. Поскольку точки а и b отстоят от центра параллелепипеда на величины (- dy/2) и ( + dy/2), а давление в каждой точке жидкости является функцией координат, то величины p1 и р2 с точностью до бесконечно малой более высокого порядка (разложение в ряд Тейлора) могут быть представлены: p1=p – ½*∂p/∂y*dy ; p2= p + ½*∂p/∂y*dy . (2.1)

Аналогично можно получить выражения для давления на гранях, параллельных плоскости хОу,

p – ½*∂p/∂z*dz ; p + ½*∂p/∂z*dz ;

и плоскости yOz p – ½*∂p/∂x*dx ; p + ½*∂p/∂x*dx ;

Параллелепипед находится в покое, следовательно, суммы про­екций всех сил, действующих на него, на любую ось равны нулю. Спроектировав силы на ось, например у, получим P1dx dz-P2dx dz+pdx dy dz Y= 0 .

Подставляя сюда значения р1 и р1 из (2.1), найдем

(p – ½*∂p/∂y*dy) dx dz – (p + ½*∂p/∂y*dy) dx dz + p dx dy dz Y=0.

Далее, после приведения, получим —∂p/∂y*dx dy dz + pdx dy dz Y=0 или после сокращения∂p/∂y – pY=0.

Аналогичные уравнения получаются также для проекций на оси х и у. В результате получаем систему из трех дифференциальных уравнений X – 1/p*∂p/∂x = 0 Y - 1/p*∂p/∂y = 0 Z - 1/p*∂p/∂z = 0. (2.2)

Эта система носит название уравнений гидростатики Эйлера: они определяют закон распределения давления вдоль соответствующей оси координат.

Умножая уравнение (2.2) соответственно: первое — на dx, второе — на dy и третье — на dz и складывая, получим Xdx + Ydy +Zdz -1/p(∂p/∂x* dx + ∂p/∂y* dy + ∂p/∂z* dz) = 0. (2.3)

Давление, напомним, есть функция только координат, поэтому выражение в скобках представляет собой полный дифференциал этой функции и уравнение (2.3) можно представить в виде

dp =ρ (Xdx + Ydy + Zdz). (2.4)

Это уравнение является основным дифференциальным уравнени­ем равновесия жидкости.

Так как левая часть формулы (2.4) является полным диффе­ренциалом, то для однородной жидкости = const) и прямаячасть тоже должна быть полным дифференциалом некоторой функции U(x,y,z), т.е.

Xdx + Ydy + Zdz = dU, Где X= ∂U/∂x , Y=∂U/∂y, Z=∂U/∂z .

Last Updated on Saturday, 08 November 2014 16:47