Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по теории вероятности - Геометрическая вероятность. Задача о встрече

Cмотрите так же...
Шпаргалки по теории вероятности
Геометрическая вероятность. Задача о встрече
Теоремы сложения вероятностей
Теоремы умножения вероятностей
Формула полной вероятности
Формула Бейеса
Повторение испытаний. Частная теорема о повторении опыта.
Функция распределения случайной величины
Плотность распределения
Числовые характеристики случайных величин
Неравенство Чебышева
Характеристические функции
Следствие из теоремы Ляпунова-теоремы Лапласа
Свойства числовых характеристик
Нормальное распределение
Правило трех сигма
Равномерное распределение
Закон Пуассона
Функция одного случайного аргумента
Функция двух случайных аргументов
Статистическое распределение выборки
Критерии согласия(критерии Пирсона)
Функция распределения системы двух случайных величин
Условные законы распределения
Зависимые и независимые случайные величины
Метод наименьших квадратов
All Pages

Геометрическая вероятность. Задача о встрече.

 

Чтобы преодолеть недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности — вероятности попадания точки в область (отрезок, часть плоскости и т. д.).

Пусть отрезок l составляет часть отрезка L. На отрезок L наудачу поставлена точка. Это означает выполнение следующих предположений: поставленная точка может оказаться в любой точке отрезка L, вероятность попадания точки на отрезок l пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L. В этих предположениях вероятность попадания точки на отрезок l определяется равенством

Р = Длина l / Длина L.

З а м е ч а н и е 1. Приведенные определения являются частными случаями общего определения геометрической вероятности. Если обозначить меру (длину, площадь, объем) области через mes, то вероятность попадания точки, брошенной наудачу (в указанном выше смысле) в область g — часть области G, равна

Р = mes g / mes G.

З а м е ч а н и е 2. В случае классического определения вероятность достоверного (невозможного) события равна единице (нулю): справедливы и обратные утверждения (например, если вероятность события равна нулю, то событие невозможно). В случае геометрического определения вероятности обратные утверждения не имеют места. Например, вероятность попадания брошенной точки в одну определенную точку области G равна нулю, однако это событие может произойти, и, следовательно, не является невозможным.

Задача о встрече:

Два лица clip_image007и clip_image008условились встретиться в определенном месте между двумя и тремя часами дня. Пришедший первым ждет другого в течении 10 минут, после чего уходит. Чему равна вероятность встречи этих лиц, если каждый из них может прийти в любое время в течение указанного часа независимо от другого?

Решение.   Будем считать интервал с 14 до 15 часов дня отрезком [0,1] длиной 1 час. Пусть clip_image009(«кси») и clip_image010(«эта»)  —  моменты прихода clip_image007[1]и clip_image008[1](точки отрезка [0,1]). Все возможные результаты эксперимента  –  множество точек квадрата со стороной 1:  clip_image011.

clip_image012

Можно считать, что эксперимент сводится к бросанию точки наудачу в квадрат. При этом благоприятными исходами являются точки множества clip_image013(10 минут = 1/6 часа). То есть попадание в множество clip_image014наудачу брошенной в квадрат точки означает, что clip_image007[2]и clip_image008[2]встретятся. Тогда вероятность встречи равна

clip_image015

 

Last Updated on Sunday, 24 January 2016 05:30