Первое начало термодинамики.
Это частный случай закона сохранения энергии в Макросистемах.
1) Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил.
2) Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе и не зависит от способа, которым осуществляется этот переход.
Первое начало термодинамики представляет собой закон сохранения энергии систем , в которых основное значение имеют тепловые процессы. Количество теплоты , переданное системе , расходуется на изменение ее внутренней энергии и на работу , совершаемую системой против внешних сил. Q=ΔU+A
Первое начало термодинамики устанавливает эквивалентность теплоты и работы . Если система совершает цикл и возвращается в исходное состояние (Δ U), то Q=A. Таким образом, работа может быть совершена системой за счет переданного ей количества теплоты.
Из этого закона вытекает – невозможность создания вечного двигателя первого рода, который производил бы работу, не затрачивая на это энергии.
Закон Гесса.
Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания (промежуточных состояний системы).
Иными словами, количество теплоты, выделяющееся или поглощающееся при каком-либо процессе, всегда одно и то же, независимо от того, протекает ли данное химическое превращение в одну или в несколько стадий (при условии, что температура, давление и агрегатные состояния веществ одинаковы).
В основе термохимии лежит закон, согласно которому тепловой эффект реакции не зависит от пути этой реакции, а определяется видом и состоянием исходных и конечных продуктов реакции.
Гесс Герман Иванович (1802 – 1850 г. г.) – русский химик, академик Петербуржской Академии наук.
Существо закона вытекает из уравнения первого начала термодинамики:
QV = -V, а QP = -H.
U и Н – функции состояния, поэтому QV и QP также функции состояния системы.
Иллюстрация закона Гесса.
C + O2 = CO2 + Q1, (3.13)
есть первый вариант реакции в системе.
C + O2 = CO + Q2,
CО + O2 = CO2 + Q3, (3.14)
второй возможный вариант реакции.
Так из одинакового исходного состояния образуется одинаковое для рассмотренных вариантов конечное состояние, то:
Q1 = Q2 + Q3. (3.15)
Закон Гесса имеет огромное практическое значение. С его помощью устанавливаются значения тепловых эффектов реакций, экспериментальное определение которых затруднительно.
Для этих целей широко используются следствия из закона Гесса.