Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по электротехнике и электронике - Фильтры(C, L, LC, RC), коэффициент пульсаций

Cмотрите так же...
Шпаргалки по электротехнике и электронике
Закон Ома для замкнутой цепи и для участка цепи
Законы Кирхгофа для цепи постоянного тока
Расчет простых цепей при различных схемах соединения потребителей
Понятие о сложной электрической цепи
Мощность, работа и потери КПД электрических цепей
Синусоидальный ток и его основные параметры
Способы представления синусоидального тока
Резисторное сопротивление в цепи синусоидального тока
Конденсатор в цепи синусоидального тока
Индуктивность в электрической цепи
Закон электромагнитной индукции
Индуктивность в цепи синусоидального тока
Взаимоиндуктивность в магнитосвязанных цепях
Законы Кирхгофа для цепей синусоидального тока
Закон Ома и сопротивления цепи синусоидального тока с последовательным соединением элементов R, L,C
Понятие о резонансе напряжений
Резонанс напряжений и его признаки
Закон Ома и проводимость цепи синусоидального тока с параллельным соединением ветвей R-L, L-C
Понятие о резонанс токов
Мгновенная мощь цепи синусоидального тока
Активная, реактивная и полная мощность цепей синусоидального тока
Коэффициент мощности и его экономическое значение
Получение трехфазной системы ЭДС и способы представления
Соединения обмоток трехфазных генераторов
Соединения приемников в трехфазных цепях
Мощность трехфазных цепей
Трансформаторы
Работа трансформаторов в различных режимах
Потери и КПД трансформаторов
Устройство, схемы и группы соединения обмоток трехфазных трансформаторов
Назначение, схема и работа автотрансформатора
Назначение, схема и работа импульсного трансформатора
Машины постоянного тока
Асинхронные электродвигатели
Синхронные электродвигатели
Пускорегулирующая аппаратура
Выбор типа и мощности электродвигателя
Провода и кабели, выбор сечения проводов
Защитное заземление
Электронно-дырочный переход
Диоды, тиристоры
Транзисторы
Основные логические операции и их реализация
Триггеры
Однофазные неуправляемые выпрямители
Трехфазные выпрямители: нулевой, мостовой
Фильтры(C, L, LC, RC), коэффициент пульсаций
Однофазные и трехфазные управляемые выпрямители
All Pages

Фильтры(C, L, LC, RC), коэффициент пульсаций

Фильтром называется четырехполюсник, содержащий реактивные компоненты, которые либо задерживают, либо пропускают к нагрузке токи (напряжения) одного или нескольких заданных диапазонов частот.

В основе принципа действия фильтра лежит зависимость полного эквивалентного сопротивления от частоты. Наибольшее распространение в маломощных выпрямителях нашли сглаживающие фильтры: L, LC, C и RC (рис.6). Важнейшим параметром сглаживающего фильтра является коэффициент сглаживания (S), который показывает, во сколько раз фильтр уменьшает пульсации (clip_image240, для фильтра L: clip_image242, для LC-фильтра:clip_image244 ,

где w -частота сигнала на выходе выпрямителя). На выходе фильтра напряжение оказывается хорошо сглаженным.

clip_image246

L-фильтр LC-фильтр С-фильр RC-фильтр

Рис. 6 Схема фильтров.

Для построения фильтров в радиоаппаратуре используется независимость от частоты (в определенном частотном диапазоне) сопротивления R и зависимость от частоты реактивного сопротивления  L, С для RC и LC цепочек.

Как уже было сказано выше в фильтрах используется зависимость полного сопротивления элементов цепочки от частоты и в общем виде описывается выражением.

Сглаживающие RС-фильтры

Фильтры используются для сглаживания пульсаций выпрямленного напряжения. Простейшим фильтром является конденсатор большой емкости, подключаемый к выходу выпрямителя. Обычно в качестве такового используют оксидные (электролитические) конденсаторы емкостью от нескольких десятков до нескольких тысяч микрофарад.

     Однако степень сглаживания пульсаций выпрямленного напряжения емкостным фильтром при больших токах нагрузки оказывается недостаточной.

     Для повышения уровня сглаживания пульсаций выпрямленного напряжения к выходу выпрямителя подключают более сложные фильтры, в состав которых помимо конденсаторов входят резисторы, дроссели, электронные лампы или транзисторы. Чтобы определить, какой фильтр лучше, вводят специальный параметр — коэффициент сглаживания. Он рассчитывается как отношение коэффициента пульсаций на выходе фильтра (Крвых) к коэффициенту пульсаций на его входе (Крвх):

 Кс = Крвых/Крвх

     Наиболее простым является Г-образный реостатно-емкостный фильтр, состоящий из резистора R1 и конденсатора Сф1

clip_image247

На рисунке показан также конденсатор С1, включенный на выходе выпрямителя. О назначении этого конденсатора сказано в предыдущем параграфе.

     Резистор R1 и конденсатор Сф1 образуют делитель напряжения пульсаций, возникающих на выходе выпрямителя (конденсатора С1). Во сколько раз сопротивление конденсатора Сф1 меньше сопротивления резистора R1 току пульсаций, во столько же раз напряжение пульсаций на конденсаторе Сф1 будет меньше, чем напряжение пульсаций на конденсаторе С1.

    Уменьшить напряжение пульсаций на нагрузке при заданной емкости конденсатора Сф1 можно путем увеличения сопротивления резистора R1. Но поскольку через R1 протекает постоянная составляющая выпрямленного тока, на резисторе теряется часть выпрямленного напряжения, и напряжение на нагрузке (на конденсаторе Сф1) оказывается меньше, чем напряжение на выходе выпрямителя (на конденсаторе С1).

     Если коэффициент сглаживания однозвенного RС-фильтра недостаточен,  т. е. амплитуда пульсаций в выпрямленном напряжении слишком велика, применяют двухзвенный RС -фильтр. В таком фильтре общий коэффициент сглаживания равен произведению коэффициентов сглаживания отдельных звеньев R1CФ1 и R2CФ2.

Сглаживающие LC-фильтры

Для увеличения КПД и уменьшения потерь выпрямленного напряжения на элементах фильтра широко применяются индуктивно-емкостные (LC) фильтры. На рисунке изображен однозвенный Г-образный LC-фильтр, состоящий из дросселя Др1 и конденсатора Сф1.

clip_image249

Этот фильтр отличается от однозвенного RС -фильтра тем, что резистор R1 заменен дросселем Др1. Дроссель обладает большим сопротивлением переменному току и малым сопротивлением постоянному току. В результате напряжение пульсаций, имеющихся на выходе выпрямителя, перераспределяется на делителе Др1Сф1 таким образом, что основная его часть падает на дросселе и несущественная — на конденсаторе Сф1. В то же время из-за малого сопротивления дросселя постоянному току напряжение на выходе фильтра будет мало отличаться от напряжения на выходе выпрямителя, т. е. КПД LC-фильтра оказывается выше, чем КПД RС -фильтра.

 Для увеличения коэффициента сглаживания можно последовательно с одним звеном LC-фильтра включить точно такое же второе звено.

   Уменьшить напряжение пульсаций на выходе однозвенного LC-фильтра можно также, если параллельно дросселю Др1 включить бумажный конденсатор С2, который вместе с индуктивностью дросселя Др1 образует параллельный колебательный контур. Сопротивление контура на резонансной частоте значительно выше сопротивления дросселя. Поэтому, если емкость конденсатора С2 выбрать такой, чтобы резонансная частота контура С2Др1 равнялась частоте пульсаций (50 Гц при однополупериодном выпрямлении или 100 Гц при двухполупериодном выпрямлении), большая часть напряжения пульсаций выделится в этом контуре и незначительная пойдет в нагрузку.

 

Last Updated on Sunday, 24 January 2016 04:34