Cмотрите так же... |
Шпаргалки по электротехнике и электронике
|
Закон Ома для замкнутой цепи и для участка цепи
|
Законы Кирхгофа для цепи постоянного тока
|
Расчет простых цепей при различных схемах соединения потребителей
|
Понятие о сложной электрической цепи
|
Мощность, работа и потери КПД электрических цепей
|
Синусоидальный ток и его основные параметры
|
Способы представления синусоидального тока
|
Резисторное сопротивление в цепи синусоидального тока
|
Конденсатор в цепи синусоидального тока
|
Индуктивность в электрической цепи
|
Закон электромагнитной индукции
|
Индуктивность в цепи синусоидального тока
|
Взаимоиндуктивность в магнитосвязанных цепях
|
Законы Кирхгофа для цепей синусоидального тока
|
Закон Ома и сопротивления цепи синусоидального тока с последовательным соединением элементов R, L,C
|
Понятие о резонансе напряжений
|
Резонанс напряжений и его признаки
|
Закон Ома и проводимость цепи синусоидального тока с параллельным соединением ветвей R-L, L-C
|
Понятие о резонанс токов
|
Мгновенная мощь цепи синусоидального тока
|
Активная, реактивная и полная мощность цепей синусоидального тока
|
Коэффициент мощности и его экономическое значение
|
Получение трехфазной системы ЭДС и способы представления
|
Соединения обмоток трехфазных генераторов
|
Соединения приемников в трехфазных цепях
|
Мощность трехфазных цепей
|
Трансформаторы
|
Работа трансформаторов в различных режимах
|
Потери и КПД трансформаторов
|
Устройство, схемы и группы соединения обмоток трехфазных трансформаторов
|
Назначение, схема и работа автотрансформатора
|
Назначение, схема и работа импульсного трансформатора
|
Машины постоянного тока
|
Асинхронные электродвигатели
|
Синхронные электродвигатели
|
Пускорегулирующая аппаратура
|
Выбор типа и мощности электродвигателя
|
Провода и кабели, выбор сечения проводов
|
Защитное заземление
|
Электронно-дырочный переход
|
Диоды, тиристоры
|
Транзисторы
|
Основные логические операции и их реализация
|
Триггеры
|
Однофазные неуправляемые выпрямители
|
Трехфазные выпрямители: нулевой, мостовой
|
Фильтры(C, L, LC, RC), коэффициент пульсаций
|
Однофазные и трехфазные управляемые выпрямители
|
All Pages
|
Page 9 of 49
Резисторное сопротивление в цепи синусоидального тока
Резистор — пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току, то есть для идеального резистора в любой момент времени должен выполняться закон Ома для участка цепи: мгновенное значение напряжения на резисторе пропорционально току проходящему через него U(t)=R∙I(t). На практике же резисторы в той или иной степени обладают также паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.
Сопротивление металлических и проволочных резисторов немного зависит от температуры. При этом зависимость от температуры практически линейная R=R0(1+α(t-t0)), так как коэффициенты 2 и 4 порядка достаточно малы и при обычных измерениях ими можно пренебречь. Коэффициент α называют температурным коэффициентом сопротивления. Такая зависимость сопротивления от температуры позволяет использовать резисторы в качестве термометров. Сопротивление полупроводниковых резисторов может зависеть от температуры сильнее, возможно, даже экспоненциально по закону Аррениуса, однако в практическом диапазоне температур и эту экспоненциальную зависимость можно заменить линейной.
Если напряжение подключить к сопротивлению R, то через него протекает ток (6.7)
Анализ выражения (6.7) показывает, что напряжение на сопротивлении и ток, протекающий через него, совпадают по фазе.
Формула (6.7) в комплексной форме записи имеет вид (6.8)
где и - комплексные амплитуды тока и напряжения.
Комплексному уравнению (6.8) соответствует векторная диаграмма (рис. 6.4).
Из анализа диаграммы следует, что векторы напряжения и тока совпадают по направлению.
Сопротивление участка цепи постоянному току называется омическим, а сопротивление того же участка переменному току - активным сопротивлением.
Рис. 6.4 - Активное сопротивление больше омического из-за явления поверхностного эффекта. Поверхностный эффект заключается в том, что ток вытесняется из центральных частей к периферии сечения проводника.