Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по дисциплине гидропневмопривод - Гидропневмоприводы и гидросистемы, обеспечивающие рабочий процесс

Cмотрите так же...
Шпаргалки по дисциплине гидропневмопривод
Устройство и рабочий процессгидротрансформатора
Принцип действия объемных гидропередач
Гидропневмоприводы металлообрабатывающих станков
Гидроприводы станочных приспособлений
Гидропневмоприводы и гидросистемы, обеспечивающие рабочий процесс
Применение гидропневмоприводов для средств комплексной механизации
Объемные гидропередачи
Характеристики роторных насосов.
Конструктивные схемы и типовые рабочие характеристики объемных насосов
Поршневые насосы
Радиально – поршневые насосы.
Аксиально-поршневые насосы
Пластинчатые насосы
Шестерные насосы
Винтовые насосы
Компрессоры
Классификация объемных гидроприводов прохарактеру движения выходного звена
Силовые гидроцилиндры, их назначение и устройство
Поворотные гидродвигатели
Роторные гидродвигатели – гидромоторы
Высокомоментные гидромоторы
All Pages

Гидропневмоприводы и гидросистемы, обеспечивающие рабочий процесс при изготовлении и обработке деталей.

В настоящее время в технологии машиностроения достаточно широко применяют различные способы изготовления деталей, рабочие процессы в которых неразрывно связаны с движением жидких сред. При формообразовании заготовок к таким процессам относятся процессы центробежного литья, литья под давлением, процессы гидродинамической очистки отливок от остатков формовочной смеси, шлаков и т.п., процессы гидродинамической штамповки листовых заготовок, разнообразные сборочные процессы В области размерной обработки к таким процессам относят электрохимическую и разнообразные комбинированные методы обработки.

Сущность электрохимической размерной обработки заключается в растворении материала детали в электролитах под действием электрического поля. Также применяется и обратный процесс - гальванопластика, позволяющий покрывать поверхность детали слоем хрома, никеля, цинка, меди и др. за счет осаждения их ионов из растворов электролита. Под действием тока в электролите материал анода (в большинстве случаев это заготовка) растворяется и в виде продуктов обработки выносится из межэлектродного пространства (МЭП) потоком электролита. Кроме того в результате электрохимических реакций образуются и газообразные продукты, которые также удаляются с потоком электролита в атмосферу. Необходимым условием осуществления процесса ЭХО является удаление продуктов обработки из областей, расположенных в местах их активного выделения (прианодная и прикатодная области). В большинстве случаев это достигается принудительной прокачкой электролита.

Если процесс ЭХО протекает в течение нескольких секунд, например, при маркировании деталей по схеме с неподвижными электродами, то электролит не успевает загрязниться продуктами обработки. В таких условиях электролит не прокачивают. При времени процесса до 8-10 секунд для перемещения электролита могут быть использованы ультразвуковые или низкочастотные вибрации электродов или влажные ленты, перемещаемые через электродный зазор. Если обрабатывают детали, предназначенные для перемещения газов или жидкостей (крыльчатки компрессоров, насосов, шнеков т др.), то электролит можно перемещать за счет вращения самой заготовки. Жидкость протекает по зазору между электродами со скоростью, регулируемой частотой вращения заготовки. В остальных случаях используют насосы. ПриЭХО в электролите происходит накопление продуктов обработки и при малых межэлектродных зазорах между электродом-инструментом и обрабатываемой деталью может происходить пробой и короткое замыкание. Электрохимические станки могут комплектоваться также тарельчатыми сепараторами, пластинчатыми отстойниками и другими устройствами для очистки электролитов. Регулирование температуры и состава электролитов осуществляют в специальных ваннах автоматическими системами. Для подогрева и охлаждения электролитов с целью стабилизации температурного режима обработки в ваннах устанавливают теплообменники.

Взаимное комбинирование традиционных и нетрадиционных технологических процессов механической обработки изделий привело к созданию, так называемых, комбинированных методов обработки. Комбинированные методы обработки образуются сочетанием различных технологических приемов, в каждом из которых пытаются использовать и усилить положительные признаки, необходимые для технологического процесса изготовления детали. Если одной из составляющих комбинированных способов является электрохимическая обработки детали в среде электролита, то для его принудительной подачи используют гидроприводы, аналогичные гидроприводам, применяемым в процессах ЭХО.

Last Updated on Thursday, 06 November 2014 17:39