Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Логика управления - Дедукция

Cмотрите так же...
Логика управления
Понятие
Суждение
Мышление
Логические приемы образования понятий
Понятие и слово
Виды понятий
Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)
Типы несовместимости: соподчинение,противоположность, противоречие
Логические операции с понятиями
Виды простых ассерторических суждений
Категорические суждения и их виды (деление по количеству и качеству)
Объединенная классификация простых категорических суждений по количеству и качеству
Распределенность терминов в категорических суждениях
Традиционная теория логического квадрата
Категорические суждения и их виды (деление do количеству и качеству)
Модальность
Сложное суждение и его виды. Исчисление высказываний
Способы отрицания суждений
Исчисление высказываний
Виды умозаключений
Дедукция
Понятие правила вывода
Силлогизм
Особые правила фигур
Правила категорического силлогизма
Энтимема
Полисиллогизм
Сорит (с общими посылками)
Формализация эпихейрем с общими посылками
Чисто условное умозаключение
Первый вероятностный модус
Второй вероятностный модус
Разделительное умозаключение
Дилемма
Трилемма
Логическая природа индукции
Виды неполной индукции
Понятие вероятности
Научная индукция
Доказательность
Закон исключенного третьего
Закон непротиворечия (закон противоречия)
Закон тождества
Понятие об аргументации
Доказательство и его структура
Виды доказательства
Критика аргументации
Опровержение. Виды опровержения
Паралогизмы
Понятие о логических парадоксах
Искусство ведения дискуссии
Спор
All Pages

 

Дедукция

 

 

В определении дедукции в логике выявляются два подхода:

1. В традиционной (не в математической) логике дедукцией называют умозаключение от знания большей степени общности i к новому знанию меньшей степени общности. Впервые теория  дедукции в этом плане была обстоятельно разработана Аристотелем;

2. В современной математической логике дедукцией называ­ется умозаключение, дающее достоверное (истинное) суждение. Четкая фиксация существенного различия классического и  современного понимания дедукции особенно важна для решения методологических вопросов. Для различения двух смыслов  дедукции можно классическое понимание обозначить термином  “дедукция1” (сокращенно Д1), а современное - “дедукция2” (Д2).  Правильно построенному дедуктивному умозаключению присущ необходимый характер логического следования заключения из данных посылок. Обобщая сказанное, можно дать такое опре­деление.

Дедуктивные умозаключения - те умозаключения, у кото­рых между посылками и заключением имеется отношение логического следования.

Определение дедуктивного умозаключения, данного в традици­онной логике (т. е. Д1), - частный случай этого определения через логическое следование. Рассмотрим пример:

Все перепончатокрылые - насекомые.

Все пчелы - перепончатокрылые.

Все пчелы - насекомые.

Здесь первая посылка “Все перепончатокрылые - насекомые” является общеутвердительным суждением и выражает большую степень обобщения по сравнению с заключением, также являющим­ся общеутвердительным суждением: “Все пчелы - насекомые”. Мы строим умозаключение от признака, принадлежащего роду (“перепончатокрылые”), к его принадлежности к виду - “пчела”, т. е. от общего класса к его частному случаю, к подклассу. Частный случай при этом не надо путать с частными суждениями вида “Не­которые S суть Р” или “Некоторые S не суть Р”.