Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Логика управления - Научная индукция

Cмотрите так же...
Логика управления
Понятие
Суждение
Мышление
Логические приемы образования понятий
Понятие и слово
Виды понятий
Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)
Типы несовместимости: соподчинение,противоположность, противоречие
Логические операции с понятиями
Виды простых ассерторических суждений
Категорические суждения и их виды (деление по количеству и качеству)
Объединенная классификация простых категорических суждений по количеству и качеству
Распределенность терминов в категорических суждениях
Традиционная теория логического квадрата
Категорические суждения и их виды (деление do количеству и качеству)
Модальность
Сложное суждение и его виды. Исчисление высказываний
Способы отрицания суждений
Исчисление высказываний
Виды умозаключений
Дедукция
Понятие правила вывода
Силлогизм
Особые правила фигур
Правила категорического силлогизма
Энтимема
Полисиллогизм
Сорит (с общими посылками)
Формализация эпихейрем с общими посылками
Чисто условное умозаключение
Первый вероятностный модус
Второй вероятностный модус
Разделительное умозаключение
Дилемма
Трилемма
Логическая природа индукции
Виды неполной индукции
Понятие вероятности
Научная индукция
Доказательность
Закон исключенного третьего
Закон непротиворечия (закон противоречия)
Закон тождества
Понятие об аргументации
Доказательство и его структура
Виды доказательства
Критика аргументации
Опровержение. Виды опровержения
Паралогизмы
Понятие о логических парадоксах
Искусство ведения дискуссии
Спор
All Pages

 

Научная индукция

 

Научной индукцией называется такое умозаключение, в котором на основании познания необходимых признаков или необходимой связи части предметов класса делается общее заключение о всех предметах класса,

Научная индукция, так же как полная индукция и математи­ческая индукция, дает достоверное заключение. Достоверность (а не вероятностность) заключений научной индукции, хотя она и не охватывает все предметы изучаемого класса, а лишь их часть (и притом небольшую), объясняется тем, что учитывает­ся важнейшая из необходимых связей - причинная связь. Так, с помощью научной индукции делается заключение: “Всем лю­дям для жизнедеятельности необходима влага”. В частности, Ю. С. Николаев и Е. И. Нилов в книге “Голодание ради здоро­вья” пишут, что человек без пищи (при полном голодании) мо­жет прожить 30-40 дней, а воду он должен пить ежедневно: без воды человек не может жить, ибо процесс обезвоживания орга­низма ведет к нарушению внутриклеточного обмена веществ, что приводит к смерти. Голодание же, проводимое под наблюдением врачей, наоборот, способствует при многих заболевани­ях (например, хроническом нефрите, гипертонической болезни, стенокардии, атеросклерозе, бронхиальной астме, шизофрении, общем ожирении) выздоровлению.

Причиной излечивания этих болезней при длительном голода­нии является изумительная саморегуляция организма во время полного лечебного голода, когда осуществляется общебиологическая перестройка организма больного человека. Обычное перееда­ние, которое ежедневно задает огромную, совершенно ненужную работу желудку и сердцу, - главная причина многих болезней, ус­талости, ранней дряхлости и преждевременной смерти.

Применение научной индукции позволило сформулировать об­щие суждения и научные законы (физические законы Архимеда, Кеплера, Ома и др.). Так, закон Архимеда описывает свойство всякой жидкости оказывать давление снизу вверх на погружен­ное в нее тело.

С применением научной индукции получены и законы разви­тия общества.

Научная индукция опирается не столько на большое число исследованных фактов, сколько на всесторонность их анализа и ус­тановление причинной зависимости, выделение необходимых при­знаков или необходимых связей предметов и явлений. Поэтому научная индукция и дает достовернее заключение.

Следует подчеркнуть, что вопросы определения дедукции и индукции являются дискуссионными: существуют различные то­чки зрения.

Философ С. А. Лебедев в результате изучения категории “ин­дукция” в истории философии и логики показал, что в процессе развития категории индукции произошло ее разделение на метод и вывод. Так рассматривали индукцию в Древней Греции Ари­стотель, в XIX в. - английский философ и экономист Дж. Ст. Милль и английский логик, экономист и статистик Ст. Джевонс. Индук­ция как метод научного познания - сложная содержательная опе­рация, включающая в себя наблюдение, анализ, отбор материа­ла, эксперимент и другие средства. Индукция как вывод отно­сится к классу индуктивных умозаключений. Позднее индукция как вывод разделилась на формальную индукцию и материаль­ную индукцию. Оба вида индукции обозначают любой вывод, посылки которого имеют менее общий характер, чем заключе­ние. Отличие их в том, что первая не учитывает специфики со­держания посылок (обыденное, философское, конкретно-научное и др.), а вторая учитывает, что имеет существенное значение.

Далее материальная индукция разделилась на научную и не­научную. Научная индукция в посылках опирается только на су­щественные связи и отношения, благодаря чему достоверность ее заключений носит необходимый характер (хотя она и являет­ся неполной индукцией). В современной логике термин “индук­ция” часто употребляют как синоним понятий “недемонстра­тивный вывод”, “вероятностный аргумент”. Таковы системы ин­дуктивной логики Р. Карнапа, Я. Хинтикки и других логиков. Но отождествление понятий “индукция”, “индуктивный вывод” с понятиями “вероятностный вывод”, “недемонстративный аргу­мент” ведет к терминологическому отождествлению разных понятий, так как гносеологическая проблематика индукции шире, чем проблематика вероятностных выводов.

Необходима четкая фиксация существенного различия класси­ческого и современного понимания индукции, что важно для ре­шения таких вопросов методологии, как индукция и проблема от­крытия научных законов, индукция и ее роль в жизни и др. Для различения двух смыслов индукции предполагают классическое понимание обозначить термином “индукция1.” (сокращенно И1), а современное - “индукция2” (Ид2)'.