Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Логика управления - Второй вероятностный модус

Cмотрите так же...
Логика управления
Понятие
Суждение
Мышление
Логические приемы образования понятий
Понятие и слово
Виды понятий
Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)
Типы несовместимости: соподчинение,противоположность, противоречие
Логические операции с понятиями
Виды простых ассерторических суждений
Категорические суждения и их виды (деление по количеству и качеству)
Объединенная классификация простых категорических суждений по количеству и качеству
Распределенность терминов в категорических суждениях
Традиционная теория логического квадрата
Категорические суждения и их виды (деление do количеству и качеству)
Модальность
Сложное суждение и его виды. Исчисление высказываний
Способы отрицания суждений
Исчисление высказываний
Виды умозаключений
Дедукция
Понятие правила вывода
Силлогизм
Особые правила фигур
Правила категорического силлогизма
Энтимема
Полисиллогизм
Сорит (с общими посылками)
Формализация эпихейрем с общими посылками
Чисто условное умозаключение
Первый вероятностный модус
Второй вероятностный модус
Разделительное умозаключение
Дилемма
Трилемма
Логическая природа индукции
Виды неполной индукции
Понятие вероятности
Научная индукция
Доказательность
Закон исключенного третьего
Закон непротиворечия (закон противоречия)
Закон тождества
Понятие об аргументации
Доказательство и его структура
Виды доказательства
Критика аргументации
Опровержение. Виды опровержения
Паралогизмы
Понятие о логических парадоксах
Искусство ведения дискуссии
Спор
All Pages

 

Второй вероятностный модус

 

Это второй модус, не дающий достоверного заключения.

Структура его:                    Схема:

Если а, то b.                                  аb

Не-а a

Вероятно, не b Вероятно, clip_image026[1]

Формула ((а→b) ^ a)→ clip_image024[6] (4) не является законом логики. Она означает, что нельзя принимать заключение за достоверное, уме заключая от отрицания основания к отрицанию следствия.

Некоторые врачи ошибочно рассуждают так:

Если человек имеет повышенную температуру, то он болен.

Данный человек не имеет повышенной температуры.

Данный человек не болен.

Учащиеся в школе также допускают логические ошибки при построении умозаключений. Вот пример:

Если тело подвергнуть трению, то оно нагреется.

Тело не подвергли трению.

Тело не нагрелось.

Заключение здесь только вероятностное, но не достоверное, ибо тело могло нагреться по какой-либо другой причине (от солнца, в печи и т. д.).

Заметим, что приведение такого рода примеров вполне достаточно для того, чтобы показать, что формы умозаключений, выражаемые формулами (3) и (4), неправильны. Но никакое количество примеров применения форм, соответствующих формулам (1)| и (2), не в состоянии - если мы оперируем только примерами —clip_image026[2] обосновать их логической правильности. Для такого обоснованна требуется уже некоторая логическая теория. Такая теория, фактически отсутствующая в традиционной логике, содержится в алгебре логики. Если формула, в которой конъюнкция посылок и предполагаемое заключение соединены знаком импликации', не является тождественно-истинной, т. е. не выражает закона логики, то в умозаключении заключение не является достоверным. С помощью табличного метода можно доказать, что колонки таблицы 1, соответствующие формулам (1) modusponens и (2) modus| tollens выражают законы логики, а это означает, что modusponensиmodustollens представляют собой логически правильные формы умозаключений.

Таблица 1

а

b

a

clip_image024[7]

a→b

(a→b)^a

((a→b)^a) →b

(а →b)^clip_image024[8]

(а →b)^clip_image024[9]clip_image039

И

И

Л

Л

И

И

И

Л

И

И

Л

Л

И

Л

Л

И

Л

И

Л

И

И

Л

И

Л

И

Л

И

Л

Л

И

И

И

Л

И

И

И

Таблицу для неправильных модусов предоставляем постро­ить читателю самому. В ней наряду со знаками “И” (“истина”) мы увидим и знаки “Л” (“ложь”), а это значит, что выражения:

((а→b)^b)→а и ((а→b)^ clip_image023[3])clip_image040 не являются тождествен­но-истинными высказываниями, т. е. законами логики.

Если умозаключают от утверждения следствия к утвержде­нию основания, то можно прийти к ложному заключению вслед­ствие множественности причин, из которых может вытекать одно и то же следствие. Например, выясняя причину заболевания че­ловека, надо перебрать все возможные причины: простудился, переутомился, был в контакте в бациллоносителем и т. д.