Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Логика управления - Закон исключенного третьего

Cмотрите так же...
Логика управления
Понятие
Суждение
Мышление
Логические приемы образования понятий
Понятие и слово
Виды понятий
Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)
Типы несовместимости: соподчинение,противоположность, противоречие
Логические операции с понятиями
Виды простых ассерторических суждений
Категорические суждения и их виды (деление по количеству и качеству)
Объединенная классификация простых категорических суждений по количеству и качеству
Распределенность терминов в категорических суждениях
Традиционная теория логического квадрата
Категорические суждения и их виды (деление do количеству и качеству)
Модальность
Сложное суждение и его виды. Исчисление высказываний
Способы отрицания суждений
Исчисление высказываний
Виды умозаключений
Дедукция
Понятие правила вывода
Силлогизм
Особые правила фигур
Правила категорического силлогизма
Энтимема
Полисиллогизм
Сорит (с общими посылками)
Формализация эпихейрем с общими посылками
Чисто условное умозаключение
Первый вероятностный модус
Второй вероятностный модус
Разделительное умозаключение
Дилемма
Трилемма
Логическая природа индукции
Виды неполной индукции
Понятие вероятности
Научная индукция
Доказательность
Закон исключенного третьего
Закон непротиворечия (закон противоречия)
Закон тождества
Понятие об аргументации
Доказательство и его структура
Виды доказательства
Критика аргументации
Опровержение. Виды опровержения
Паралогизмы
Понятие о логических парадоксах
Искусство ведения дискуссии
Спор
All Pages

 

Закон исключенного третьего

 

Закон исключенного третьего следует рассматривать как дальнейшее уточнение требований непротиворечивости, последовательности и определенности, предъявляемых к мышлению. Он должен способствовать устранению из наших рассуждений неопределенных, двусмысленных выражений, употреблению определенных вопросов и ответов в дискуссиях и т.п.

Закон исключенного третьего имеет силу лишь при условии соблюдения требований ранее изложенных законов тождества и противоречия и может быть сформулирован следующим образом: в процессе рассуждения необходимо доводить дело до определенного утверждения или отрицания, в этом случае истинным оказывается одно из двух отрицающих друг друга суждений.

Смысл закона исключенного третьего выражает формула:
clip_image052
Где А есть суждение, clip_image053 – его отрицание, ^ – знак конъюнкции, читается как «ИЛИ».
Этим законом исключается истинность какого-либо третьего суждения, кроме того суждения, к которому мы пришли, или его отрицания. Здесь предлагается сделать выбор из двух противоречащих друг другу суждений. Одно из них должно быть непременно истинным. При этом закон не указывает, какое именно из суждений истинно, но указывает, что  истина лежит лишь в пределах этих двух суждений, а не какого-то третьего. Закон исключенного третьего имеет силу относительно любых пар суждений, в которых одно утверждает то, что отрицается в другом. Например, из высказываний: (1) «Все планеты имеют спутников» и (2) «Неверно, что все планеты имеют спутников» (или то же самое «Некоторые планеты не имеют спутников») истинным является только одно, а именно (2). Никакого «третьего высказывания», которое также было бы истинным, между ними образовать нельзя.

Суждения (1) и (2) находятся в отношении противоположности друг к другу. Заметим особо, что закон исключенного третьего имеет обязательную силу лишь для определенного вида противоположности между высказыванием и его отрицанием, а именно для отношенияконтрадикторной противоположности. Наш пример как раз включает суждения такого вида.

Для отношения же контрарной или так называемой диаметральной противоположности закон исключенного третьего силы не имеет. Если мы сравним суждение (1) «Все планеты имеют спутников» с суждением (3) «Ни одна планета не имеет спутников», то обнаружим, что ни одно из них не может быть истинным, оба суждения ложны. В то же время между ними угадывается некое «третье суждение» (2) «Некоторые планеты не имеют спутников», которое как раз и оказывается истинным. Суждения (1) и (3) не удовлетворяют закону исключенного третьего. Это обстоятельство в отдельных случаях может выступать показателем контрарной противоположности между суждениями. Любая пара суждений, подчиняющаяся действию закона исключенного третьего, подчиняется также и закону противоречия, но не обязательно имеет место обратное.
Несмотря на ограниченность своего применения, закон исключенного третьего играет все же значительную роль как в практике познания, так и в решении многих чисто логических вопросов. Он лежит в основе многих умозаключений и доказательств от противного (косвенных доказательств). В косвенных доказательствах устанавливается ложность противоречащего доказываемому суждению положения, что на основании закона исключенного третьего позволяет заключать об истинности доказываемого суждения.

Приведем пример. Допустим, нам надо доказать истинность следующего суждения: «Луна есть спутник планеты Земля». Для этого мы выдвигаем противоречащее суждение: «Луна не есть спутник планеты Земля». Устанавливая ложность этого суждения, мы выдвигаем такой аргумент: если бы Луна не была спутником планеты Земля, она бы не появлялась постоянно на ночном небе в ясную погоду в точно зафиксированных точках пространства. Но так как появление Луны в указанных точках и при указанных условиях есть эмпирический факт, то предположение о том, что Луна не есть спутник Земли, неверно. Следовательно, «Луна есть спутник планеты Земля». Другой аргумент, опровергающий противоречащее суждение: если бы Луна не была спутником планеты Земля, то периодичность приливов и отливов на побережье мировых океанов (6 часов) не имела бы места (не происходила). Но так как приливы и отливы в связи с движением Луны вокруг Земли доказаны наукой, наше допущение о том, что Луна не есть спутник Земли, неверно. Следовательно, истинно, что «Луна есть спутник планеты Земля».

А вот другой пример, известный как исторический факт. Сторонники геоцентрической модели мироздания, системы Птолемея-Аристотеля утверждали: (1) «Земля есть центр Вселенной, она неподвижна, а Солнце и планеты вращаются вокруг нее». Из числа аргументов в пользу этого положения выдвигался и такой аргумент: (2) «Земля не есть центр Вселенной; она, как и все другие планеты, вращается вокруг Солнца». Теперь этот контраргумент подвергался критическому анализу, в частности, указывалось на то, что если бы Земля вращалась вокруг Солнца, то птицы, взлетев в небо, не смогли бы приземлиться (она ушла бы от них), а облака не могли бы зависать над Землей и улетели бы прочь. Так как ни того, ни другого никогда не происходило и не происходит, в чем мог и может убедиться каждый, то аргумент (2) оказывается ложным, тогда аргумент (1) – истинным.

Данный аргумент был опровергнут Н. Коперником, который методом наблюдений звездного неба и вычислений небесных тел пришел к выводу о том, что Земля находится в движении вокруг Солнца. Что же касается птиц и облаков, то их «привязанность» к Земле при ее движении стала поводом для дальнейших научных исследований этого явления как факта. Подобные примеры знакомы студентам из школьного курса геометрии, когда при доказательстве теорем неоднократно использовалось доказательство от противного.
Как мы могли убедиться, закон исключенного третьего не содержит указания на то, какое именно из двух противоречащих друг другу суждений истинно. Решение этого вопроса выходит за рамки логики и требует обращения к практике как критерию истины.