Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по философии науки. Общие проблемы философии часть 2 - измерение — наука

Cмотрите так же...
Шпаргалки по философии науки. Общие проблемы философии часть 2
Основные концепции пространства и времени.
Понятия пространства и времени в философии и естествознании 18—19 вв.
Развитие представлений о пространстве и времени в 20 в.
Принципы системного подхода и проблема познания сложных систем в естествознании
Свойства систем и их классификация.
Эволюция системных представлений
Эволюционная проблема в астрономии и космологии
Тенденция физикализации химии
История развития математики.
Почему человечество создало математику?
Почему математика устроена аксиоматически?
Почему ЗНАНИЕ математики не гарантирует УМЕНИЯ пользоваться ей в конкретном проектировании систем?
измерение — наука
Какова «ключевая идея», которая приблизила нас к современному уровню понимания математики?
Проблема оснований математики
Основные этапы трансформации представлений о месте и роли биологии в системе научного познания
Роль философской рефлексии в развитии наук о жизни
Принцип развития биологии
Современные представления об эволюции.
Второй синтез. Источники синтетической теории эволюции.
Синтетическая теория эволюции
На пути к третьему синтезу
От эволюции к глобальному эволюционизму.
Парадигмальный поворот с локального эволюционизма на глобальный
Философская значимость теории организма
Подход В. И. Вернадского
Эволюция
Глобальный эволюционизм
Антропный принцип с позиции глобального эволюционизма
Уровни организации живого
Происхождение жизни
Эволюция представлений об организованности и системности в биологии (по работам А.А.Богданова, В.И.Вернадского, Л.фон Берталанфи, В.Н.Беклемишева).
Динамическое равновесие и «закон наименьших»
Принцип системности в сфере современного биологического познания
Экофилософия
Новый гуманизм
Экологические аспекты структурной перестройки народного хозяйства
All Pages

 

 

измерение — наука

Здесь нам предстоит вернуться назад на половину тысячелетия. Только к середине пятнадцатого века само понятие «НАУКА» было связано с понятием «ИЗМЕРЕНИЕ», что и было совершено Николаем Кузанским. Проблема СООТНЕСЕНИЯ символов математических теорий с показаниями физических приборов — и есть проблема УМЕНИЯ использовать математику в решении прикладных проблем проектирования систем.

Уже двести лет тому назад, не без участия Канта, были сформулированы основные ЭСТЕТИЧЕСКИЕ понятия: «чувственное восприятие ДЛИТЕЛЬНОСТИ» и «чувственное восприятие ПРОТЯЖЕННОСТИ». Мы встречаемся с этими понятиями под названием либо ПРОСТРАНСТВА, либо ВРЕМЕНИ. И здесь мы встречаемся со «злым гением» Минковского. Это с его легкой руки начали считать ПРОТЯЖЕННОСТЬ и ДЛИТЕЛЬНОСТЬ одним и тем же. Если просто помнить, что комплексное сопряжение означает поворот на угол в 90°, то можно понять, что ВРЕМЯ может считаться «ортогональным» к пространственной ПРОТЯЖЕННОСТИ.

Мы уже имели исторический опыт Гамильтона, который (следуя Канту) хотел рассматривать алгебру, как НАУКУ О ЧИСТОМ ВРЕМЕНИ, считая ее дополнением к учению о ПРОСТРАНСТВЕ, изучаемому ГЕОМЕТРИЕЙ.

Геометрия и хронометрия

Именно здесь мы можем ПРОТИВОПОСТАВИТЬ как противоположенные два понятия: «ГЕОМЕТРИЯ» и «ХРОНОМЕТРИЯ». Для сохранения исторической преемственности с классической математикой мы будем отождествлять ХРОНОМЕТРИЮ с ГОНИОМЕТРИЕЙ, следуя в этом пункте предложениям Ф. Клейна.

Обратим внимание на РАЗЛИЧИЕ их ЕДИНИЦ. Классическое различие единиц длины, площади и объема мы выражаем СТЕПЕНЯМИ (лучше говорить о СТУПЕНЯХ). Совсем иначе обстоит дело с единицами ВРЕМЕНИ. Основная единица ВРЕМЕНИ дается выражением (через углы) по Эйлеру.

Соотношение между пространственными единицами и единицами времени есть соотношение между АДДИТИВНОЙ и МУЛЬТИПЛИКАТИВНОЙ группами: сложению ДЛИН соответствует мультипликативное «сложение» УГЛОВ.

Не является предметом данного раздела обобщение сказанного до многомерных, пространств ГЕОМЕТРИИ и ХРОНОМЕТРИИ. Предложение О. Веблена по обобщению Эрлангенской программы Клейна позволяет совершить переход к многомерному времени.