Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по философии науки. Общие проблемы философии часть 2 - Свойства систем и их классификация.

Cмотрите так же...
Шпаргалки по философии науки. Общие проблемы философии часть 2
Основные концепции пространства и времени.
Понятия пространства и времени в философии и естествознании 18—19 вв.
Развитие представлений о пространстве и времени в 20 в.
Принципы системного подхода и проблема познания сложных систем в естествознании
Свойства систем и их классификация.
Эволюция системных представлений
Эволюционная проблема в астрономии и космологии
Тенденция физикализации химии
История развития математики.
Почему человечество создало математику?
Почему математика устроена аксиоматически?
Почему ЗНАНИЕ математики не гарантирует УМЕНИЯ пользоваться ей в конкретном проектировании систем?
измерение — наука
Какова «ключевая идея», которая приблизила нас к современному уровню понимания математики?
Проблема оснований математики
Основные этапы трансформации представлений о месте и роли биологии в системе научного познания
Роль философской рефлексии в развитии наук о жизни
Принцип развития биологии
Современные представления об эволюции.
Второй синтез. Источники синтетической теории эволюции.
Синтетическая теория эволюции
На пути к третьему синтезу
От эволюции к глобальному эволюционизму.
Парадигмальный поворот с локального эволюционизма на глобальный
Философская значимость теории организма
Подход В. И. Вернадского
Эволюция
Глобальный эволюционизм
Антропный принцип с позиции глобального эволюционизма
Уровни организации живого
Происхождение жизни
Эволюция представлений об организованности и системности в биологии (по работам А.А.Богданова, В.И.Вернадского, Л.фон Берталанфи, В.Н.Беклемишева).
Динамическое равновесие и «закон наименьших»
Принцип системности в сфере современного биологического познания
Экофилософия
Новый гуманизм
Экологические аспекты структурной перестройки народного хозяйства
All Pages

 

 

Свойства систем и их классификация.
Системам независимо от их природы присущ ряд свойств:

целостность - принципиальная несводимость свойств системы к сумме свойств составляющих ее элементов и невыводимость из последних свойств целого, а также зависимость каждого элемента, свойства и отношения системы от его места внутри целого, функции и т.д. Появление у системы специфических свойств, не присущих ни одному элементу, называется эмерджентностью;

структурность- возможность описания системы через установление ее структуры или, проще говоря, сети связей и отношений между элементами системы. Структурность также подразумевает обусловленность свойств и поведения системы не столько свойствами и поведением ее отдельных элементов, сколько свойствами ее структуры.

принцип обратной связи - взаимозависимость системы и среды, выражающаяся в том, что система формируется и проявляет свои свойства в процессе взаимодействия со средой, являясь при этом ведущим активным компонентом взаимодействия;

иерархичностьсистем, т.е. каждый компонент системы в свою очередь может рассматриваться как система, а исследуемая в конкретном случае система представляет собой один из компонентов более широкой системы;

множественность описаниясистемы, т.е. в силу принципиальной сложности каждой системы ее познание требует построения множества различных моделей, каждая из которых описывает лишь определенный аспект системы.

Известно большое количество классификаций систем. Так, системы можно разделить на материальные и абстрактные. Материальные системы представляют собой целостные совокупности материальных объектов и в свою очередь делятся на системы неорганической природы (физические, химические, геологические и др.) и на живые (начиная с простейших биологических систем через организмы, виды, экосистемы к социальным системам). Абстрактные системы являются продуктом человеческого мышления. Это разного рода понятия, гипотезы, теории, концепции и т.д. По другому основанию можно разделить системы на статические, состояние которых в течение времени не меняется (например, газ в герметичной емкости и находящийся в равновесии), и динамические, состояние которых изменяется (земная кора, организм, биогеоценоз и т.д.). Еще одна классификация делит системы на детерминированные, в которых значение переменных системы в некоторый момент времени позволяет установить состояние системы в любой другой момент, и вероятностные (стохастические), в которых с определенной вероятностью можно предсказать направление изменения переменных. Классификация по характеру взаимоотношения системы и ее среды делит системы на закрытые, которые не ведут обмена со своей средой веществом и энергией; полуоткрытые, обменивающиеся только энергией, и открытые, которые обмениваются и энергией, и веществом.

Информационные аспекты изучения систем. Информация - специфическая форма взаимодействия между объектами любой физической природы или, точнее, такой аспект взаимодействия, который несет сведения о взаимодействующих объектах. В сущности, информация - мера организованности системы в противоположность понятию энтропии как меры неорганизованности (негэнтропия). Заслуга в построении современной теории информации принадлежит К. Шеннону.

Изучение потоков информации в системах имеет очень большое значение. Так, если вещественные и энергетические потоки обеспечивают целостность системы и возможность ее существования, то потоки информации, переносимые сигналами, организуют все ее функционирование, управляют ею. Поэтому при изучении любого объекта как системы не следует ограничиваться рассмотрением и описанием вещественной и энергетической его сторон, необходимо проводить исследование информационных аспектов системы (сигналов, информационных потоков, организации, управления и т.д.).

Информационный анализ систем использует представление о сигналах - носителях информации, средстве перенесения информации в пространстве и времени. В качестве сигналов выступают состояния некоторых объектов: чтобы два объекта содержали информацию друг о друге, необходимо соответствие между их состояниями; тогда по состоянию одного объекта можно судить о состоянии другого. Соответствие между состояниями двух объектов устанавливается либо в результате непосредственного взаимодействия, либо с помощью взаимодействия с промежуточными объектами.

Модели и моделирование систем. Одна из характерных особенностей современного естествознания - его модельный характер, т.е. все объекты, явления и процессы описываются с помощью моделей.

Под моделью будем понимать вещественный или мысленно представляемый аналог определенного оригинала, подобный ему в существенных для конкретного исследования чертах. По сути модель является неким «заместителем» оригинала в познании и практике. Основные функции моделей - фиксация знаний и получение информации. Они служат для хранения и расширения знания или, как иногда говорят, информации об оригинале, конструирования оригинала, преобразования и управления им.

Моделированием называется исследование каких-либо явлений, процессов или систем путем построения и изучения их моделей, а также использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов.

Моделирование - одна из основных категорий теории познания. На идее моделирования по существу базируется любой метод научного исследования.

Главными различиями между моделью и действительностью являются конечность, упрощенность и приближенность модели.

clip_image001clip_image003

При изучении систем используют модели «черного», «белого» и «серого» ящика. Систему представляют как «черный ящик», если неизвестно внутреннее строение самой системы; ее поведение и функционирование изучается по входному и выходному сигналам. Эта модель отражает два важных свойства системы - целостность и обособленность от среды. Система не является полностью изолированной от среды, она связана со средой и с помощью этих связей взаимодействует с ней (входы и выходы системы). Данная модель является чисто эмпирической. При изучении системы как «белого ящика», наоборот, известны все элементы и их взаимосвязи. Для такой системы возможно построение полной теоретической модели. Систему рассматривают как «серый ящик», когда что-то из внутреннего строения объекта известно, а что-то остается неизвестным, например модель состава системы с неизвестной структурой или, наоборот, модель структуры с неизвестным составом. Модель такой системы является полуэмпирической.

Построение эмпирических моделей - единственно возможный способ моделирования тех элементов системы, для которых нельзя построить в настоящее время теоретических моделей из-за отсутствия сведений об их внутреннем механизме.