Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Агрохимия и агропочвоведение - Поступление питательных веществ в растения. Строение плазмолеммы. Преодоление мембранного барьера. Транспорт иона по тканям растения.

Cмотрите так же...
Агрохимия и агропочвоведение
Методы агрономической химии.
Применение удобрений как фактор интенсификации земледелия. Значение удобрений в повышении продуктивности сельскохозяйственных культур.
Современное состояние пахотных почв России. Пути выхода из сложившейся ситуации.
Агрохимическая служба РФ.
Питание растений. Типы и виды питания растений.
Химический состав растений. Органические соединения сухого вещества растений, их роль в формировании качества продукции сельскохозяйственных культур.
Химический состав растений. Макро-, микро- и ультрамикроэлементы, необходимость их для растений. Роль зольных элементов в формировании качества продукции сельскохозяйственных культур.
Вынос элементов питания с урожаем (биологический, хозяйственный, остаточный).
Поступление питательных веществ в растения. Строение корневой системы. Поступление иона в свободное пространство корня.
Поступление питательных веществ в растения. Строение плазмолеммы. Преодоление мембранного барьера. Транспорт иона по тканям растения.
Влияние условий внешней среды на поступление питательных веществ в растения (концентрация почвенного раствора, соотношение макро- и микроэлементов в питательной среде, влажность и аэрация почвы).
Влияние условий внешней среды на поступление питательных веществ в растения (тепловой режим, свет, реакция среды, деятельность почвенных микроорганизмов).
Избирательная способность растений. Физиологическая реакция удобрений.
Периодичность питания растений. Сроки и способы внесения удобрений.
Визуальный метод растительной диагностики минерального питания растений.
Химический метод растительной диагностики минерального питания растений.
Почва как объект изучения агрохимии. Фазовый состав почвы.
Минеральная часть твёрдой фазы почвы.
Органическая часть твёрдой фазы почвы.
Поглотительная способность почвы, понятие и виды. Биологическая, механическая и физическая поглотительная способность почвы.
Химическая поглотительная способность почвы.
Физико-химическая поглотительная способность почвы. Необменное поглощение катионов.
Ёмкость катионного обмена почв и состав поглощённых катионов.
Реакция почвы (кислотность, щёлочность). Принципы методов определения обменной (рНKCl) и гидролитической кислотности почв.
Сумма поглощённых оснований и степень насыщенности ими почв. Принцип метода определения суммы поглощённых оснований в почвах.
Буферность почвы.
Агрохимическая характеристика дерново-подзолистых и серых лесных почв.
Агрохимическая характеристика чернозёмов и каштановых почв.
Агрохимическое обследование почв. Методика проведения и использование материалов для почвенной диагностики питания растений и сертификации почв земельных участков.
Отношение сельскохозяйственных культур и почвенных микроорганизмов к кислотности почвы и известкованию.
Значение кальция и магния для растений.
Взаимодействие извести с почвой. Влияние извести на свойства почвы.
Определение необходимости и очерёдности известкования почв. Основное и поддерживающее известкование.
Определение доз извести.
Известковые удобрения. Классификация. Промышленные удобрения (твёрдые известковые породы).
Известковые удобрения. Классификация. Местные удобрения (мягкие известковые породы). Отходы промышленности, богатые известью.
Место внесения извести в севообороте. Сроки и способы внесения известковых удобрений.
Эффективность известкования. Влияние извести на урожайность и качество продукции сельскохозяйственных культур, эффективность органических и минеральных удобрений.
Гипсование. Почвы, нуждающиеся в гипсовании. Взаимодействие гипса с почвой. Влияние гипса на свойства солонцов и солонцеватых почв.
Определение доз гипса. Мелиоративные материалы, используемые для гипсования.
Место внесения гипса в севообороте. Сроки и способы внесения гипса. Влияние гипсования на урожайность и качество продукции сельскохозяйственных культур. Другие способы мелиорации солонцовых почв.
Значение серы для растений. Удобрение гипсом бобовых трав.
Классификация минеральных удобрений. Физико-механические свойства минеральных удобрений.
Физиологическая роль азота, его содержание в растениях и вынос урожаями сельскохозяйственных культур. Источники азотного питания растений.
Превращения азота в растениях. Динамика потребления азота в течение вегетации. Признаки недостатка и избытка азота для растений.
Содержание и формы азота в почвах.
Агрохимические показатели, характеризующие обеспеченность почв азотом. Принципы методов определения содержания нитратного, аммонийного и легкогидролизуемого азота в почвах, нитрификационной способности почв.
Превращения азота в почвах. Основные процессы, значение их в связи с питанием растений и применением удобрений, регулирование агротехническими приёмами.
Баланс азота в почвах.
Источники получения, классификация и ассортимент азотных удобрений.
Нитратные удобрения. Состав. Получение. Свойства. Взаимодействие с почвой. Применение.
Аммонийные удобрения. Состав. Получение. Свойства. Взаимодействие с почвой. Применение.
Аммонийно-нитратные удобрения. Состав. Получение. Свойства. Взаимодействие с почвой. Применение.
Аммиачные удобрения. Состав. Получение. Свойства. Взаимодействие с почвой. Применение.
Амидные удобрения. Состав. Получение. Свойства. Взаимодействие с почвой. Применение.
Аммиакаты. Карбамид-аммиачная селитра. Медленнодействующие азотные удобрения. Состав. Получение. Свойства. Взаимодействие с почвой. Применение.
Ингибиторы нитрификации. Коэффициенты использования азота из минеральных удобрений.
Дозы, сроки и способы внесения азотных удобрений.
Эффективность азотных удобрений. Экологические аспекты применения азотных удобрений.
Группировки и таблицы
Полезные формулы
Примеры решения задач
All Pages

 

 Поступление питательных веществ в растения. Строение плазмолеммы. Преодоление мембранного барьера. Транспорт иона по тканям растения.

 

clip_image015

 

Основной компонент мембран – белки и фосфолипиды.

 

            Фосфолипиды имеют уникальную способность хорошо взаимодействовать как с гидрофильными так и с гидрофобными соединениями.

 

clip_image016            Мембрана построена из 3-х слоев. Внутренний образован 2мя слоями фосфолипидов которые смыкаются гидрофобными концами благодаря силам Ван-дер-Ваальса и находятся в полужидком состоянии. Фосфолипидный слой с 2х сторон покрыт белками кроме того в толще мембраны находятся крупные глобулы белковой природы плавающие в липидном слое, а иногда пронизывающие всю мембрану насквозь.

 

Белки взаимодействуют с полимерными головками липидов, образуя водородные связи. Таким образом структура плазмолеммы с оной стороны относительно стабильна, с ругой поддерживается слабыми связями. Поэтому мембрана может очень динамично изменять конфигурацию – увеличиваться или уменьшаться в размерах. Проницаемость плазмолеммы для молекул воды объясняется наличием пор представленных участками с гидрофильными свойствами.

 

 

Существует 2 механизма перемещения веществ через плазмолемму:

 

  1. пассивный транспорт

     

  2. активный транспорт

     

 

При пассивном энергия клетки не расходуется, вещества перемещаются по градиенту концентрации (диффузия и осмос) или электрического потенциала (электрофорез). Т.к. элементы питания поступают в клетку в виде ионов, направление их движения определяется совместным действием указанных выше градиентов, составляющих электрохимический градиент.

 

Проникновение ионов в клетку при пассивном транспорте происходит через гидрофильные поры.

 

Активный транспорт – это перемещение питательных веществ против электрохимического градиента требующее больших затрат метаболической энергии, т.е. активный транспорт работает в том случае когда электрохимический градиент не работает на клетку.

 

Теория переносчиков объясняет механизм активного транспорта действием специфических белков (переносчиков), образующих комплекс с соответствующим ионом и осуществляющим перенос его через мембрану.  Например, белковые глобулы диаметром, превышающим толщину плазмолеммы могут обеспечивать транспорт ионов, вращаясь вокруг своей оси. Челночный механизм переноса предполагает движение переносчика растворенного в фосфолипидном слое от наружной стороны к внутренней и обратно. При эстафетном механизме ион передается от одной молекулы белка к другой. Предполагается, что образование в плазмолемме гидрофильных пор также проходит с участием белков переносчиков, молекулы которых формируют стенки каналов и обеспечивают избирательность транспорта ионов.

 

В результате работы переносчиков ионы интенсивно накапливаются или выкачиваются клеткой, поэтому механизмы активного транспорта называют ионными насосами (помпами).

 

Особое значение имеет протонная помпа – белковый комплекс осуществляющий выброс ионов Н+ из клетки за счет энергии АТФ. Таким образом на мембране генерируется электрохимический градиент создающий условия для работы других переносчиков. Градиент обеспечивает движение ионов элементов питания – антипорт.  

 

Концентрационный градиент протонов вызывает их обратное поступление, при этом переносчик обеспечивает возврат Н+ и параллельно может переносить анионы (симпорт) или молекулы органических веществ (котранспорт).

 

Поступление питательных веществ в клетку может происходить путем пиноцитоза. Участок мембраны на котором адсорбируются капли жидкости втягивается внутрь и образуется пиноцетарный пузырек, разрушающийся лизосомами. Содержащиеся в нем вещества попадают в цитоплазму. Процесс пиноцетоза протекает только при участии АТФ.