Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Основы иммунологии - Процессинг антигена, его значение в развитии иммунного ответа

Cмотрите так же...
Основы иммунологии
Предмет, цели и задачи иммунологии
Общая характеристика иммунной системы млекопитающих
Строение и характеристика центральных и периферических органов иммунной системы
Понятие об иммунитете. Естественный иммунитет. Активная и пассивная формы иммунитета.
Искусственный иммунитет и его роль в борьбе с инфекционными заболеваниями. Понятие о вакцинах и сыворотках, применяемых для профилактики инфекционных болезней
Конститутивные и индуцибельные защитные механизмы организма млекопитающих от инфекции.
Защитная функция кожи и слизистых оболочек млекопит-х.
Роль нормальной микрофлоры человека в защите от инфекции.
Развитие и характеристика фагоцитирующих клеток млекопитающих
Процесс фагоцитоза. Механизмы инактивации микроорганизмов фагоцитами.
Система комплемента, пути ее активации и механизм действия.
Общая характеристика иммунного ответа на тимусзависимые антигены, его этапы и конечный результат.
Развитие и характеристика антигенпредставляющих клеток, их локализация в организме
Процессинг антигена, его значение в развитии иммунного ответа
Т-лимфоциты, их развитие и локализация. Т-хелперы и их роль в развитии иммунного ответа на тимусзависимые антигены
В-лимфоциты, их развитие и локализация. Плазматические клетки и продукция антител
Иммунологическая память. Первичный и вторичный иммунный ответ
Характер взаимодействий антигенпредставляющих клеток
Понятие об антигенах. Общие свойства антигенов. Полные и неполные антигены.
Классификация антигенов по происхождению. Типы антигенной специфичности
Зависимость антигенных свойств от молекулярной структуры.
Классификация антигенов по происхождению. Типы антигенной специфичности
Функции Fаb- и Fс-частей молекулы иммуноглобулина
Генетические механизмы формирования специфичности иммуноглобулинов и переключения клеток на синтез иммуноглобулинов определенного класса
Паратоп и эпитоп. Характер взаимодействия антиген-антитело. Аффинитет и авидность
Агглютинация и преципитация. Реакции агглютинации и преципитации, применяемые в биологии и медицине
Иммуноэлектрофорез, его основные разновидности
Методы иммунофлюоресценции
Иммуноферментный анализ
Иммуноблотинг
реакции с участием комплимента.
Реакции нейтрализации, реакция опсонизации
Анафилаксия, анафилактический шок, сывороточная болезнь. Механизм возникновения гиперчувствительности немедленного типа. Аллергия и аллергены
Гиперчувствительность замедленного типа и механизмы ее развития
All Pages

 

Процессинг антигена, его значение в развитии иммунного ответа


Процессинг антигенов. Экспрессию молекул HLA I и II классов, презентирующих антиген, регулируют три генетических локуса HLA - TAP, DM и LMP, определяющих их взаимодействие с антигенами. Первыми в системупроцессинга различных экзогенных антигенов включаются молекулы HLA-LMP2 и HLA-LMP7,которые экспрессируются под влиянием gamma-интерферона. Они запускают протеолиз в протеосомах и регулируют размер и специфичность пептидов для связывания с молекулами HLA. Протеосома представляет собой ферментный комплекс из 24 белковых субъединиц. Две цепи молекул HLA II класса синтезируются в эндоплазматическом ретикулуме, временно соединяются с третьей, инвариантной Ii(CD74) цепью, которая предотвращает связывание их с аутопептидами. Затем этот комплекс переносится в эндосомы, где связывается с соответствующим пептидом-антигеном длиной 9-25 аминокислот, вытесняющим инвариантную Ii цепь. Путем слияния эндосомы с мембраной, молекулы HLA-DR экспрессируются с антигеном-пептидом на поверхности клетки. Вытеснение пептида инвариантной цепи и замену его специфическим пептидом-антигеном осуществляют особые белки локуса HLA-DM, катализирующие этот процесс. Молекулы МНС I класса постоянно синтезируются в эндоплазматическом ретикулуме клетки и стабилизируются белком калнексином. Эндогенные и вирусные антигены предварительно расщепляются в протеосоме на пептиды размером 8-11 аминокислотных остатков. При связывании с антигеном-пептидом калнексин отщепляется, а молекулы МНС переносятся с помощью транспортных белков HLA-TAP (transporter of antigen processing) на поверхность клетки, где этот комплекс представляется Т-супрессорам/киллерам. Особенности структуры молекул МНС II класса в отличие от МНС I класса таковы, что обеспечивают связывание более полиморфных пептидов-антигенов. Стабильную трехмерную форму на клетках молекулы ГКГС приобретают только после связывания их складками-сайтами соответствующих пептидов. Презентируемый комплекс "молекула ГКГС -пептид" остается на клетке (макрофаге и др.) несколько недель, что позволяет другим клеткам, в частности Т-лимфоцитам, взаимодействовать с ним. В связь с конкретным пептидом-антигеном вступают конкретные аллельные специфичности молекул ГКГС, что и обеспечивает распознавание антигена. Так, например, пептид вируса герпеса связывается с гаплотипом HLA-DQA 1*0501/DQВ 1*2001, но не с другим, отличающимся только на 15 аминокислотных остатков.