Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки к экзамену–обработка и фильтрация сигналов - Согласованные фильтры

Cмотрите так же...
Шпаргалки к экзамену–обработка и фильтрация сигналов
Динамическое представление сигналов
Спектральное представление сигналов
Основные свойства преобразований Фурье
Спектральные плотности модулируемых сигналов
Понятие случайного процесса
Связь корреляционной и спектральной теории случайного процесса
Прохождение сигналов через системы преобразования информации
Классификация помех. Электрические помехи
Измерение информации. Энтропия
Информационная модель сигнала в интроскопии и акустике
Передача сигналов по непрерывному каналу
Согласование характеристик сигнала и канала передачи
Согласованные фильтры
Оптимальная фильтрация по критерию минимума среднеквадратичной ошибки
Неразрушающий контроль изделий и обнаружение сигналов
Обнаружение сигналов на фоне реверберационной помехи
Последовательные обнаружители
Основные параметры и характеристики систем ОИ
Частотные коэффициенты передачи основных звеньев приборов НК
Выбор полосы пропускания, расчёт пороговой чувствительности
All Pages



 

Согласованные фильтры


Предположим, что на устройство обработки информации на протяжении некоторого времени действует сигнал S(t), являющийся информационным. Кроме того действует на устройство обр. информации помеха n(t), которая представляет собой белый шум с нормальным законом распределения плотности вероятности. Результирующий сигнал x(t), который принимается можно представить в виде функции неявного вида, зависящей от 2-х переменных x(t) = F(S(t),n(t)).
clip_image181
Линейный фильтр, на выходе которого формируется оптимальное отношение сигнал/шум при приёме детерминированного сигнала на фоне белого шума, называют согласованным фильтром. Частотный коэффициент передачи согласованного фильтра ( W(ω) = const = W0 ) можно вычислить: clip_image183, где clip_image185. Следует отметить, что согласованный фильтр можно использовать при приёме полностью известного сигнала на фоне помехи с произвольным спектром мощности. Для этого достаточно пропустить исследуемый сигнал через специальный линейный фильтр, который превращает помеху с произвольным спектром мощности в белый шум. Такой фильтр называют обеляющим. Частотный коэффициент передачи обеляющего фильтра:
clip_image187

 

где К – пост. коэффициент; Wвх(ω) – спектр мощности помехи на входе фильтра.
clip_image189 (т.е. это белый шум).

 

Включение обеляющего фильтра в тракт обработки сигналов изменяет частотный коэффициент передачи этого тракта.
Предположим, преобразование сигналов производилось трактом, который имел частотный коэффициент передачи K(jω). Данный тракт дополнен обеляющим фильтром. В результате шум на выходе тракта оказался белым, но суммарный частотный коэффициент передачи этого тракта при этом изменился: clip_image191
clip_image192


Методы синтеза оптимальных фильтров. Синтез согласованного фильтра для прямоугольного видеоимпульса спектральным методом


Существуют различные подходы к синтезу оптимальных фильтров. Наиболее эффективным методом синтеза является спектральный метод, который основан на использовании выражения для частотного коэффициента передачи фильтра:
clip_image194.
Для согласованных фильтров применяют как спектральный так и временной методы синтеза. Временной метод базируется на использовании связи между импульсной характеристикой фильтра и формой фильтруемого сигнала. При этом синтез согласованного фильтра состоит в построении такого линейного устройства, импульсная характеристика которого с точностью до постоянного коэффициента воспроизводила бы с некоторым запаздыванием функцию, являющуюся зеркальным отражением сигнала. Данный метод особенно удобен для сигналов симметричной формы. Зеркальное отражение сигнала совпадает с самим сигналом, что значительно облегчает синтез согласованного фильтра.
Рассмотрим синтез фильтра спектральным методом на примере прямоугольного видеоимпульса.
clip_image195
С математической т.зр. модель сигнала во временной области следующая:
clip_image197

 

Найдем спектральную плотность данного сигнала. Для этого воспользуемся прямым преобразованием Фурье:
clip_image199clip_image201clip_image203

 

Воспользуемся выражением для частотного коэффициента передачи согласованного фильтра:

 

clip_image205 Подставим в указанную формулу значение комплексно-сопряженной составляющей спектральной плотности сигнала, получим:
clip_image207clip_image209
Полученное выражение является основой для синтеза оптимального фильтра. Предположим что максимальное отношение сигнал/шум формируется в момент окончания действия импульса на входе, т.е. t0=τи. С учетом данного предположения получаем что частотный коэффициент передачи K() будущего фильтра равен:
clip_image211
Постоянная величина K показывает, что сигнал усиливается. Оператор 1/ называется оператором идеального интегрирования гармонического сигнала. Оператор clip_image213 показывает задержку сигнала на время t0.