Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки к экзамену–обработка и фильтрация сигналов - Понятие случайного процесса

Cмотрите так же...
Шпаргалки к экзамену–обработка и фильтрация сигналов
Динамическое представление сигналов
Спектральное представление сигналов
Основные свойства преобразований Фурье
Спектральные плотности модулируемых сигналов
Понятие случайного процесса
Связь корреляционной и спектральной теории случайного процесса
Прохождение сигналов через системы преобразования информации
Классификация помех. Электрические помехи
Измерение информации. Энтропия
Информационная модель сигнала в интроскопии и акустике
Передача сигналов по непрерывному каналу
Согласование характеристик сигнала и канала передачи
Согласованные фильтры
Оптимальная фильтрация по критерию минимума среднеквадратичной ошибки
Неразрушающий контроль изделий и обнаружение сигналов
Обнаружение сигналов на фоне реверберационной помехи
Последовательные обнаружители
Основные параметры и характеристики систем ОИ
Частотные коэффициенты передачи основных звеньев приборов НК
Выбор полосы пропускания, расчёт пороговой чувствительности
All Pages

 

 

Понятие случайного процесса. Стационарность случайного процесса


Понятие случайного процесса.
Теория случайных величин изучает вероятностные явления как фиксированные результаты некоторых физических экспериментов, т.е. изучает физические процессы в статике. Для описания сигналов, которые отображают, развивающиеся во времени, физические процессы методом классической теории вероятности оказалось недостаточно. Подобные задачи изучает особая ветвь в математике, которая называется теория случайных процессов.
Случайные процессы принято обозначать x(t). Случайный процесс x(t) – это особого вида функция, характеризующая тем, что в любой момент времени ее значение является случайным. Иногда говорят, что x(t) – случайная функция. Имея дело с детерминированными сигналами, мы отображаем их функциональной зависимостью S(t) или осциллограммой. Имея дело со случайным сигналом, приходящегося фиксировать мгновенное значение случайного сигнала и получать при этом единичную реализацию случайного процесса.
Случайный процесс x(t) представляет собой бесконечное число случайной реализации xi(t), которые образуют статистический ансамбль {xi(t)}.
Классификация случайных процессов.
Случайные процессы подразделяют на: стационарные и нестационарные, эргодические и неэргодические.
Деление случайных процессов на стационарные и нестационарные базируется на понятии плотности вероятности случайных процессов. (*)
Рассмотрим случайный процесс x(t) заданный статистическим ансамблем x1(t), x2(t)… (рис.). Зафиксируем момент времени t. Указанная процедура называется сечением случайного процесса и она позволяет получить выборку случайных процессов, которая характеризует состояние случайного процесса в момент времени x1. Зафиксируем момент времени t2 и рассмотрим сечение случайного процесса в данный момент времени.
Для двух случайных величин полученных в момент времени t1 и t2 можно ввести двумерную плотность вероятности p(x1,x2,t1,t2). Предположим, что зафиксировано n случайных измерений. В этом случаи можно говорить, о n-мерной плотности распределения вероятности p(x1,x2,…,xn,t1,t2,…,tn). Физический смысл показывает вероятность реализации случайной величины x1 в момент времени t1; вероятность реализации случайной величины x2 в момент времени t2.
Случайный процесс называется стационарным, если его n – мерная плотность распределения вероятности не зависит от временного сдвига по оси времени. Для определения стационарности и не стационарности случайного сигнала исследуют источник этого сигнала, и если обнаруживается, что нет явных изменений в параметрах источника сигнала, то генерируемый сигнал считается стационарным.
Некоторые стационарные процессы обладают интересным свойством. Оно заключается в том, практически каждая реализация случайного процесса ведет себя так, как и весь статистический ансамбль. В результате динамику такого случайного процесса можно изучать по одной из реализаций. Сам же случайный процесс называется эргодическим.

Статистические параметры случайного процесса. Свойства


Используются следующие параметры:
1. Мат. ожид. случ. процесса mx(t)
2. Дисперсия Dx(t)
3. Кореляц. ф-ция Rx(t1,t2)
Мат. ожид. случ. Процесса - неслучайная ф-ция, значение которой при каждом фиксированном моменте аргументе моменте времени равно мат. ожид. сечения, соотв. этому моменту времени.
Дисперсия случ. процесса - неслучайная и неотрицательная ф-ция, значение которой при каждом фиксированном моменте времени равно дисперсии сечения, соотв. этому моменту времени.
Корреляц. ф-ция случ. процесса- неслучайная ф-ция, значение которой при каждой паре фиксированных аргументов равно корреляц. моменту сечений, соотв. данным величинам.
Статистические параметры могут быть вычислены математически и экспериментально.
Мат. ожид:
clip_image054
Дисперсия:
clip_image056 clip_image058
Корреляц. ф-ция:
clip_image060= clip_image062
Если корреляционные и взаимокорреляционные функции не зависят от аргументов, то процессы – стационарно связанные.
Описание процессов с помощью статических характеристик – корреляционная теория сл. процессов.


Измерение характеристик случайного процесса


Измерение математического ожидания и дисперсии базируется на следующем принципе: сначала определяется плотность распределения вероятностей, а потом производится интегрирование полученного результата. Предположим, что имеется одна случайная реализация x(t). Оказывается, что одномерная плотность распределения вероятности эргодического случайного процесса пропорциональна времени пребывания случайных реализаций этого процесса на уровне между величиной x и x+∆х.
Устройство для измерения одномерной плотности распределения вероятности содержит компаратор, на один из входов которого подается случайная реализация x(t), на 2-ой вход уровень сигнала х, формирователь импульсов ФИ, интегрирующий прибор (стрелочный прибор, выполняющий функцию интегрирования).
clip_image063
Таким образом данное устройство позволяет измерять математическое ожидание случайного процесса. При измерении дисперсии случайного процесса после формирователя импульсов включается емкость С, а в качестве инерционного прибора применяют квадратичный вольтметр, который выполняет функцию возведения результатов измерения в квадрат.
clip_image064
Прибор для измерения корреляционной функции называется коррелометром. Принцип работы коррелометра следующий (1): мгновенное значение исследуемого сигнала после фильтрации постоянной составляющей разделяют на два канала. В одном из каналов осуществляют задержку сигнала на время τ. После этого полученные сигналы перемножают, и результат перемножения измеряют инерционным прибором, осуществляющим интегрирование. Полученный результат соответствует корреляционной функции сигнала.