Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по ТММ - Режимы движения машинного агрегата

Cмотрите так же...
Шпаргалки по ТММ
Степень свободы (подвижности) пространственных и плоских механизмов
Кинематические цепи и их классификация
Основные принципы образования механизмов
Группа Ассура
Кинематический анализ рычажных механизмов методом планов
Кинематический анализ рычажных механизмов методом замкнутого векторного контура
Виды зубчатых механизмов
Кинематика зубчатых механизмов с неподвижными осями колес
Кинематика дифференциальных и планетарных механизмов
Кинематика карданной передачи
Динамическая модель машинного агрегата
Приведенный момент сил и приведенный момент инерции
Режимы движения машинного агрегата
Задачи и методы силового расчёта механизмов
Определение сил инерции
Условие статической определимости кинематических цепей
Силовой расчет рычажных механизмов методом планов и аналитическим методом
Трение в поступательных кинематических парах
Трение во вращательных парах
Трение в винтовой кинематической паре
Трение качения в высших кинематических парах
КПД при последовательном и параллельном соединении механизмов
Неуравновешенность вращающихся масс и ее виды
Уравновешивание нескольких вращающихся масс, расположенных в одной плоскости
Уравновешивание механизмов на фундаменте
Виды кулачковых механизмов
Угол давления в кулачковых механизмах
Определение основных размеров кулачковых механизмов
Основная теорема зубчатого зацепления (теорема Виллиса)
Эвольвента окружности, ее уравнения и свойства
Основные геометрические параметры зубчатого колеса
Свойства эвольвентного зацепления
Качественные показатели зубчатого зацепления
Методы нарезания зубчатых колес
Явление подрезания зубьев
Выбор коэффициента смещения
All Pages

  Режимы движения машинного агрегата

В зав-сти от того какую работу сов-ют внешние силы машины различают три режима движ.: разгон (разбег, пуск), торможение (выбег, останов) и установившееся движение.

Установившимся движ. мех-зма наз. такое движ., при котором его обобщенная скорость и кин. энергия являются периодическими функциями времени. Мин. промежуток в начале и в конце которого повторяются знач. кин. энергии и обобщенной скорости механизма – называют временем цикла установившегося движения.

Для идеальной механич. сис-мы, в которой нет потерь энергии и звенья абсолютно жесткие при получении уравнений движ. механизма можно воспользоваться теоремой об изменении кин. энергии: разность энергии за какой либо промежуток времени равна работе сил за тот же промежуток времени.

clip_image045

где Ад.с.– работа движущих сил; Ап.с.– работа сил производственных сопротивлений; Ав.с. – работа сил вредных сопротивлений (трения и внешней среды); АG – работа сил веса.

Для режима разгона: ωi0 = 0, Ап.с.= 0, тогда:

clip_image047

Работа движ. сил при разгоне расходуется кин. энергию, работу сил вредных сопротивлений и веса. При установившемся движ. за каждый цикл движ. работа всех внешних сил равна нулю clip_image049. Для режима выбега: ωi = 0, Ад.с. = 0, Ап.с.= 0 тогда:

clip_image051

Запасённая кинетическая энергия при выбеге тратится на преодоление работ сил вредных сопротивлений и веса. Режимы разгона и выбега называют режимами неустановившегося движения.

 

Определения закона движения звена приведения.

Сущность метода определение законов движения звеньев и всего механизма сводится к интегрированию дифференциальных уравнений F = m*(d2s/dtau2) или T = J*(d2fi/dtau2), являющихся выражением второго закона механики (закона Ньютона).

Особенность определения законов движения звеньев:

·        многочисленность звеньев в сложных механизмах, поэтому для каждого звена могут быть свои законы движения;

·        связанность звеньев и следовательно, их движений

Определение закона движения звена приведения. Чтобы оперировать минимальным числом параметров, в механизме выделяют звено приведения - какое-либо из звеньев, характер движения которого простейший: движение это прямолинейное или вращательное. Влияние массовых характеристик остальных звеньев и действующих на них усилий учитывают с помощью приведенных параметров, значения которых определяют из условий энергетической эквивалентности звена приведения и всего механизма. Это значит, что энергия и характер ее изменения для звена приведения и для всего механизма в каждый момент времени одинаковы.

 

Last Updated on Saturday, 23 January 2016 13:57