Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по ТММ - Определение сил инерции

Cмотрите так же...
Шпаргалки по ТММ
Степень свободы (подвижности) пространственных и плоских механизмов
Кинематические цепи и их классификация
Основные принципы образования механизмов
Группа Ассура
Кинематический анализ рычажных механизмов методом планов
Кинематический анализ рычажных механизмов методом замкнутого векторного контура
Виды зубчатых механизмов
Кинематика зубчатых механизмов с неподвижными осями колес
Кинематика дифференциальных и планетарных механизмов
Кинематика карданной передачи
Динамическая модель машинного агрегата
Приведенный момент сил и приведенный момент инерции
Режимы движения машинного агрегата
Задачи и методы силового расчёта механизмов
Определение сил инерции
Условие статической определимости кинематических цепей
Силовой расчет рычажных механизмов методом планов и аналитическим методом
Трение в поступательных кинематических парах
Трение во вращательных парах
Трение в винтовой кинематической паре
Трение качения в высших кинематических парах
КПД при последовательном и параллельном соединении механизмов
Неуравновешенность вращающихся масс и ее виды
Уравновешивание нескольких вращающихся масс, расположенных в одной плоскости
Уравновешивание механизмов на фундаменте
Виды кулачковых механизмов
Угол давления в кулачковых механизмах
Определение основных размеров кулачковых механизмов
Основная теорема зубчатого зацепления (теорема Виллиса)
Эвольвента окружности, ее уравнения и свойства
Основные геометрические параметры зубчатого колеса
Свойства эвольвентного зацепления
Качественные показатели зубчатого зацепления
Методы нарезания зубчатых колес
Явление подрезания зубьев
Выбор коэффициента смещения
All Pages

Определение сил инерции

 

Сила инерции – фиктивная сила, которую можно ввести в неинерциальной системе отсчёта так, чтобы законы механики в ней совпадали с законами инерциальных систем. В математических вычислениях введения этой силы происходит путём преобразования уравнения F1+F2+…Fn = ma к виду

F1+F2+…Fn–ma = 0, где Fn – реально действующая сила, а ma – «сила инерции».

Закон инерции про инерционные системы отсчёта гласит, что без влияния неуравновешенных сил тело будет сохранять свою скорость или неподвижность. В качестве примера силы инерции можно рассмотреть простую силу инерции, которую можно ввести в равноускоренной системе отсчёта:

Написать пример с быстро останавливающимся автобусом полным пассажирами.

Среди сил инерции выделяют следующие:

·        простую силу инерции, которую мы только что рассмотрели;

·        центробежную силу, объясняющую стремление тел улететь от центра во вращающихся системах отсчёта;

·        силу Кориолиса, объясняющую стремление тел сойти с радиуса при радиальном движении во вращающихся системах отсчёта;

С точки зрения общей теории относительности, гравитационные силы в любой точке – это силы инерции в данной точке искривлённого пространства Эйнштейна (см. принцип эквивалентности).

 

 

   

Last Updated on Saturday, 23 January 2016 13:57