Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по ТММ - Эвольвента окружности, ее уравнения и свойства

Cмотрите так же...
Шпаргалки по ТММ
Степень свободы (подвижности) пространственных и плоских механизмов
Кинематические цепи и их классификация
Основные принципы образования механизмов
Группа Ассура
Кинематический анализ рычажных механизмов методом планов
Кинематический анализ рычажных механизмов методом замкнутого векторного контура
Виды зубчатых механизмов
Кинематика зубчатых механизмов с неподвижными осями колес
Кинематика дифференциальных и планетарных механизмов
Кинематика карданной передачи
Динамическая модель машинного агрегата
Приведенный момент сил и приведенный момент инерции
Режимы движения машинного агрегата
Задачи и методы силового расчёта механизмов
Определение сил инерции
Условие статической определимости кинематических цепей
Силовой расчет рычажных механизмов методом планов и аналитическим методом
Трение в поступательных кинематических парах
Трение во вращательных парах
Трение в винтовой кинематической паре
Трение качения в высших кинематических парах
КПД при последовательном и параллельном соединении механизмов
Неуравновешенность вращающихся масс и ее виды
Уравновешивание нескольких вращающихся масс, расположенных в одной плоскости
Уравновешивание механизмов на фундаменте
Виды кулачковых механизмов
Угол давления в кулачковых механизмах
Определение основных размеров кулачковых механизмов
Основная теорема зубчатого зацепления (теорема Виллиса)
Эвольвента окружности, ее уравнения и свойства
Основные геометрические параметры зубчатого колеса
Свойства эвольвентного зацепления
Качественные показатели зубчатого зацепления
Методы нарезания зубчатых колес
Явление подрезания зубьев
Выбор коэффициента смещения
All Pages

Эвольвента окружности, ее уравнения и свойства.

Эвольвентой называется кривая, очерчиваемая точкой прямой, при перекатывании этой прямой по окружности без проскальзывания (рис. 1). В теории зацепления прямую называют производящей (образующей), а окружность – основной окружностью (радиус rb).

clip_image143

Рассмотрим построение эвольвенты Е (рис. 1). В произвольной точке эвольвенты М проведем нормаль, которая касается основной окружности в точке В, получаем радиус кривизны эвольвенты ρ.

Из прямоугольного треугольника ΔОВМ найдем катет МВ:

clip_image145

 

clip_image147

Из условия образования эвольвенты радиус кривизны МВ должен быть равен длине развертываемой дуги АВ основной окружности: ÈАВ = rb× (q+a),

 

clip_image149где q - полярный угол наклона радиус вектора; a - угол между направлением радиус вектора и направлением радиуса основной окружности проведенного в точке касания нормали. Отсюда:

 

Разность тангенса и угла представляет собой эвольвентную функцию называемую инволютой. Инволюта является параметром для геометрических расчетов зубчатых механизмов.

Свойства эвольвенты:

·        эвольвента не имеет точек внутри основной окружности;

·        нормаль к любой точке эвольвенты направлена по касательной к основной окружности;

·        центр кривизны эвольвенты лежит в точке касания нормали с основной окружностью.

  

Last Updated on Saturday, 23 January 2016 13:57