Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по ТММ - Трение качения в высших кинематических парах

Cмотрите так же...
Шпаргалки по ТММ
Степень свободы (подвижности) пространственных и плоских механизмов
Кинематические цепи и их классификация
Основные принципы образования механизмов
Группа Ассура
Кинематический анализ рычажных механизмов методом планов
Кинематический анализ рычажных механизмов методом замкнутого векторного контура
Виды зубчатых механизмов
Кинематика зубчатых механизмов с неподвижными осями колес
Кинематика дифференциальных и планетарных механизмов
Кинематика карданной передачи
Динамическая модель машинного агрегата
Приведенный момент сил и приведенный момент инерции
Режимы движения машинного агрегата
Задачи и методы силового расчёта механизмов
Определение сил инерции
Условие статической определимости кинематических цепей
Силовой расчет рычажных механизмов методом планов и аналитическим методом
Трение в поступательных кинематических парах
Трение во вращательных парах
Трение в винтовой кинематической паре
Трение качения в высших кинематических парах
КПД при последовательном и параллельном соединении механизмов
Неуравновешенность вращающихся масс и ее виды
Уравновешивание нескольких вращающихся масс, расположенных в одной плоскости
Уравновешивание механизмов на фундаменте
Виды кулачковых механизмов
Угол давления в кулачковых механизмах
Определение основных размеров кулачковых механизмов
Основная теорема зубчатого зацепления (теорема Виллиса)
Эвольвента окружности, ее уравнения и свойства
Основные геометрические параметры зубчатого колеса
Свойства эвольвентного зацепления
Качественные показатели зубчатого зацепления
Методы нарезания зубчатых колес
Явление подрезания зубьев
Выбор коэффициента смещения
All Pages

Трение качения в высших кинематических парах

 

В высшей кинематической паре имеет место скольжение и качение элементов друг по другу. Сила трения скольжения вычисляется также как и в поступательной паре. Сопротивление перекатыванию учитывается моментом трения качения, который направлен противоположно угловой скорости.

Физическая природа трения качения изучена недостаточно, поэтому обычно пользуются экспериментальными данными. При качении тела затрачивается работа, которая идет на деформацию поверхностей качения. Пусть, например, перекатывается цилиндр по плоскости (рис. 3.16). Перед цилиндром образуется волна деформации, которая движется вместе с ним. Равнодействующая элементарных реакций смещена от точки а на величину k. Для качения цилиндра необходимо преодолеть момент Мтр  = kN = k Q, где Q – сила, приложенная к телу. Коэффициент пропорциональности в этой формуле, по аналогии с законом трения на плоскости, называют коэффициентом трения качения.

 

clip_image081

 

 

 

Last Updated on Saturday, 23 January 2016 13:57