Основная теорема зубчатого зацепления (теорема Виллиса).
Для постоянства передаточного отношения при зацеплении двух профилей зубьев необходимо, чтобы радиусы начальных окружностей зубчатых колёс, перекатывающихся друг по другу без скольжения, оставались неизменными. Если рассмотреть обращённое движение начальных окружностей, когда всей системе задана угловая скорость (-ω2), то второе колесо будет условно неподвижным и точка Р является мгновенным центром относительного вращения колёс (рис. 70,а). Эта точка, называемая полюсом зацепления, где контактируют начальные окружности, делит межцентровое расстояние на отрезки, обратно пропорциональные угловым скоростям, т. к.
Точка контакта зубьев (точка К), принадлежащая первому колесe, вращается вокруг точки Р, которая будет мгновенным центром скоростей. Скорость Vk и совпадает с общей касательной к профилям в точке К при условии постоянства этого контакта.
В противном случае постоянного контакта не будет, так как появится Vk” и профили разомкнутся. Так как рассматривается произвольное положение зубьев, то можно сформулировать теорему.
Нормаль NN к касающимся профилям зубьев, проведенная через точку их касания, делит межцентровое расстояние на части, обратно пропорциональные угловым скоростям.
Эта теорема, сформулированная Виллисом в 1841г., определяет основной закон зацепления профилей, которые не могут быть произвольными, а должны быть специально подобраны.