Виды гидравлических сопротивлений.
Потери удельной энергии в потоке жидкости, безусловно, связаны с вязкостью жидкости, но сама вязкость - не единственный фактор, определяющий потери напора. Но можно утверждать, что величина потерь напора почти всегда пропорциональны квадрату средней скорости движения жидкости. Эту гипотезу подтверждают результаты большинства опытных работ и специально поставленных экспериментов. По этой причине потери напора принято исчислять в долях от скоростного напора (удельной кинетической энергии потока). Тогда:
Потери напора принято подразделять на две категории:
потери напора, распределённые вдоль всего канала, по которому перемещается жидкость (трубопровод, канал, русло реки и др.), эти потери пропорциональны длине канала и называются потерями напора по длине сосредоточенные потери напора: потери напора на локальной длине потока (достаточно малой по сравнению с протяжённостью всего потока). Этот вид потерь во многом зависит от особенностей преобразования параметров потока (скоростей, формы линий тока и др.). Как правило, видов таких потерь довольно много и их расположение по длине потока зачастую далеко не закономерно. Такие потери напора называют местными потерями или потерями напора на местных гидравлических сопротивлениях. Это вид потерь напора также принято исчислять в долях от скоростного напора Тогда полные потери напора можно представить собой как сумму всех видов потерь напора:
Оценка величины местных потерь напора практически всегда базируются на результатах экспериментов, по результатам таких экспериментов определяются величины коэффициентов потерь. Для вычисления потерь напора по длине имеются более или менее надёжные теоретические предпосылки, позволяющие вычислять потери с помощью привычных формул.
Ламинарное равномерное движение жидкости в трубе круглого сечения.
ЛАМИНАРНОЕ ТЕЧЕНИЕ(от лат. lamina - пластинка) - упорядоченный режим течения вязкой жидкости (или газа), характеризующийся отсутствием перемешивания между соседними слоями жидкости. Условия, при к-рых может происходить устойчивое, т. е. не нарушающееся от случайных возмущений, Л. т., зависят от значения безразмерного Рейнольдса числа Re. Для каждого вида течения существует такое число RеКр, наз. нижним критич. числом Рейнольдса, что при любом Re<Reкp Л. т. является устойчивым и практически осуществляется; значение Rекр обычно определяется экспериментально. При Rе>Rекр, принимая особые меры для предотвращения случайных возмущений, можно тоже получить Л. т., но оно не будет устойчивым и, когда возникнут возмущения, перейдёт в неупорядоченное турбулентное течение .Теоретически Л. т. изучаются с помощью Навье - Стокса уравнений движения вязкой жидкости. Точные решения этих ур-ний удаётся получить лишь в немногих частных случаях, и обычно при решении конкретных задач используют те или иные приближённые методы.
Представление об особенностях Л. т. даёт хорошо изученный случай движения в круглой цилиндрич. трубе. Для этого течения RеКр2300, где Re= ( - средняя по расходу скорость жидкости, d - диаметр трубы, - кинематич. коэф. вязкости, - динамич. коэф. вязкости, - плотность жидкости). Т. о., практически устойчивое Л. т. может иметь место или при сравнительно медленном течении достаточно вязкой жидкости или в очень тонких (капиллярных) трубках. Напр., для воды (=10-6 м2/с при 20° С) устойчивое Л. т. с=1 м/с возможно лишь в трубках диаметром не более 2,2 мм.
Распределение напряжений по радиусу.
Касательные напряжения. Рассмотрим правила определения величины касательных
напряжений на примере потока жидкости в круглой цилиндрической трубе. Двумя сечениями выделим в потоке жидкости отсек длиной l. На данный отсек жидкости будут действовать силы давления, приложенные к площадям живых сечений потока жидкости слева и справа и сила трения, направленная в сторону обратную движению жидкости. Поскольку движение жидкости установившееся, то все действующие на отсек жидкости силы должны быть уравновешены.
где: r0 - касательные напряжения на боковой поверхности отсека жидкости.
Касательные напряжения на периферии отсека жидкости (у стенки трубы) будут равны:
Очевидно, это будут максимальная величина касательных напряжений в отсеке жидкости. Вычислим величину касательных напряжений на расстоянии r от оси трубы.
Таким образом, касательные напряжения по сечению трубы изменяются по линейному закону; в центре потока (на оси трубы) r=0 касательные напряжения т= 0.