Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Ответы к экзаменам по курсу гидравлика - Турбулентное движение жидкости

Cмотрите так же...
Ответы к экзаменам по курсу гидравлика
Гипотеза сплошности
Давление: абсолютное, избыточное, вакуумное
Плотность
Уравнение состояния
Коэффициенты сжимаемости
Равновесие несжимаемой жидкости в поле силы тяжести
Свойства гидростатического давления
Основное уравнение гидростатики для капельных жидкостей и газов
Примеры применения основных уравнений гидростатики
Единицы измерения давления
Понятие центра давления
Основные задачи и методы гидродинамики
Потоки напорный и безнапорный, гидравлические струи
Общие сведения о гидравлических сопротивлениях
Виды гидравлических сопротивлений
Связь между средней и осевой скоростями
Потери напора на трение по длине потока
Формула Пуазейля
Турбулентное движение жидкости
Коэффициент гидравлического сопротивления при турбулентном течении
Основные расчетные формулы
Определение и виды местных сопротивлений
Формула Вейсбаха
Эквивалентная длина
Типы трубопроводов
Особенности расчета трубопроводов, работающих под вакуумом
Расчет трубопровода из труб с переменным сечением
Истечение жидкости из отверстий и насадков
Коэффициенты сжатия, скорости и расхода
Потери в отверстиях и насадках
Гидравлический удар в трубах
All Pages

Турбулентное движение жидкости.

Турбулентность экспериментально открыта английским инженером Рейнольдсом в 1883 году при изучении течения несжимаемой воды в трубах.

ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ - форма течения жидкости или газа, при к-рой вследствие наличия в течении многочисл. вихрей разл. размеров жидкие частицы совершают хаотич. неустановившиеся движения по сложным траекториям в противоположность ламинарным течениям с гладкими квазипараллельными траекториями частиц. Т. т. наблюдаются при определ. условиях (при достаточно больших Рейнольдса числах)в трубах, каналах, пограничных слоях около поверхностей движущихся относительно жидкости или газа твёрдых тел, в следах за такими телами, струях, зонах перемешивания между потоками разной скорости, а также в разнообразных природных условиях.

Т. т. отличаются от ламинарных не только характером движения частиц, но также распределением осреднённой скорости по сечению потока, зависимостью средней или макс. скорости, расхода и коэф. сопротивления от числа Рейнольдса Re, гораздо большей интенсивностью тепло-и массообмена.

Мгновенные параметры потока (скорость, температура, давление, концентрация примесей) при этом хаотично колеблются вокруг средних значений. Зависимость квадрата амплитуды от частоты колебаний (или спектр Фурье) является непрерывной функцией.

Для возникновения турбулентности необходима сплошная среда, которая подчиняется кинетическому уравнению Больцмана или Навье-Стокса или пограничного слоя. Уравнение Навье-Стокса (в него входит и уравнение сохранения массы или уравнение неразрывности) описывает множество турбулентных течений с достаточной для практики точностью.Обычно турбулентность наступает при превышении некоторого критического числа Рейнольдса и/или Релея (в частном случае скорости потока при постоянной плотности и диаметре трубы и/или температуры на внешней границе среды).

Поле скоростей в турбулентном потоке.

Хотя дифференциальные уравнения движения реальной жидкости справедливы также и для истинных скоростей турбулентного движения, однако сложность явлений, происходящих в нем, не позволяет для исследования этого потока воспользоваться этими уравнениями. Вместо действительного турбулентного потока в гидравлике исследуется его упрощенная модель — осредненный турбулентный поток. При построении этой модели исходят из гипотезы о том, что поле скоростей в пространстве, занимаемым турбулентным потоком, можно разбить на два поля: на поле местных осредненных скоростей u и на поле пульсационных скоростей u’.

В этом потоке проекции истинных скоростей ux, uy и uz можно выразить через проекции осредненных скоростей clip_image315 , и clip_image317 и пульсационных clip_image319 а именно

clip_image320clip_image322

Такая модель потока позволяет установить важные соотношения между осредненными характеристиками турбулентного потока (осредненными скоростями, давлениями), что и является важнейшей задачей гидравлики.

Осредненный сформировавшийся установившийся поток, так же как и ламинарный поток в трубопроводе, формируется постепенно. Длина начального участка 6удет зависеть от условий входа и от числа Re, соответствующего потоку. Однако роль начального участка в гидравлических расчетах турбулентных потоков незначительна. Большое количество экспериментальных исследований показывает, что практически формирование поля осредненных скоростей заканчивается на длине трубопровода, равной clip_image324.

Экспериментальные исследования при турбулентном течении.

При наблюдении за движением жидкости в трубах и каналах, можно заметить, что в одном случае жидкость сохраняет определенный строй своих частиц, а в других - перемещаются бессистемно. Однако исчерпывающие опыты по этому вопросу были проведены Рейнольдсом в 1883 г. На рис. 4.1 изображена установка, аналогичная той, на которой Рейнольдс производил свои опыты.

clip_image326

Рис. 4.1. Схема установки Рейнольдса

Установка состоит из резервуара А с водой, от которого отходит стеклянная труба В с краном С на конце, и сосуда D с водным раствором краски, которая может по трубке вводиться тонкой струйкой внутрь стеклянной трубы В.

Первый случай движения жидкости. Если немного приоткрыть кран С и дать возможность воде протекать в трубе с небольшой скоростью, а затем с помощью крана Е впустить краску в поток воды, то увидим, что введенная в трубу краска не будет перемешиваться с потоком воды. Струйка краски будет отчетливо видимой вдоль всей стеклянной трубы, что указывает на слоистый характер течения жидкости и на отсутствие перемешивания. Если при этом, если к трубе подсоединить пьезометр или трубку Пито, то они покажут неизменность давления и скорости по времени. Такой режим движения называется ламинарный.

Второй случай движения жидкости. При постепенном увеличении скорости течения воды в трубе путем открытия крана С картина течения вначале не меняется, но затем при определенной скорости течения наступает быстрое ее изменение. Струйка краски по выходе из трубки начинает колебаться, затем размывается и перемешивается с потоком воды, причем становятся заметными вихреобразования и вращательное движение жидкости. Пьезометр и трубка Пито при этом покажут непрерывные пульсации давления и скорости в потоке воды. Такое течение называется турбулентным (рис.4.1, вверху). Если уменьшить скорость потока, то восстановится ламинарное течение.

Last Updated on Saturday, 08 November 2014 16:47