Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Ответы к экзаменам по курсу гидравлика - Типы трубопроводов

Cмотрите так же...
Ответы к экзаменам по курсу гидравлика
Гипотеза сплошности
Давление: абсолютное, избыточное, вакуумное
Плотность
Уравнение состояния
Коэффициенты сжимаемости
Равновесие несжимаемой жидкости в поле силы тяжести
Свойства гидростатического давления
Основное уравнение гидростатики для капельных жидкостей и газов
Примеры применения основных уравнений гидростатики
Единицы измерения давления
Понятие центра давления
Основные задачи и методы гидродинамики
Потоки напорный и безнапорный, гидравлические струи
Общие сведения о гидравлических сопротивлениях
Виды гидравлических сопротивлений
Связь между средней и осевой скоростями
Потери напора на трение по длине потока
Формула Пуазейля
Турбулентное движение жидкости
Коэффициент гидравлического сопротивления при турбулентном течении
Основные расчетные формулы
Определение и виды местных сопротивлений
Формула Вейсбаха
Эквивалентная длина
Типы трубопроводов
Особенности расчета трубопроводов, работающих под вакуумом
Расчет трубопровода из труб с переменным сечением
Истечение жидкости из отверстий и насадков
Коэффициенты сжатия, скорости и расхода
Потери в отверстиях и насадках
Гидравлический удар в трубах
All Pages

Типы трубопроводов.

clip_image425Короткие (условно) – называются трубопроводы небольшой длинны, если местные потери совместимы с потерями на длине, или превышают потери по длине. Это – всасывающие трубы центробежных насосов, сифоны, сливные патрубки.

Длинные – называются трубопроводы, имеющие значительную протяженность, в которых наоборот, потери напора по длине являются основными, а местными потерями пренебрегают, или же оценивают их приближенно.

Учитывая гидравлическую схему работы длинных трубопроводов, их можно разделить также на простые и сложные.

Простые – трубопроводы одинакового по длине диаметра, состоящие из одной лишь линии или нитки.

Сложные - трубопроводы, в случае, если они имеют одно или несколько ответвлений, параллельные ветви и переменный по длине диаметр т.д

- параллельные соединения (рис. а) — (лупинг) когда к основной магистрали подключены параллельно её еще одна или несколько труб.

- разветвленные (рис. б) или тупиковые трубопроводы, в которых жидкость из магистрали не отнимается в боковые ответвления и обратно в магистраль не поступает.

- кольцевые (рис. в)– трубопроводы, представляющие собой замкнутую магистраль, питающую расположенные вдоль нее расходные пункты.

Три задачи расчёта простых трубопроводов и методы их решения.

Задача первая.

Требуется определить напор в начале трубопровода, чтобы обеспечить заданный расход жидкости Q по трубопроводу с известными параметрами. Уравнение Бернулли, записанное для сечений на поверхности жидкости в резервуаре 1-1 и на выходе из трубы 2-2 (рис. 6.2, а) имеет вид:

clip_image427

Пренебрегая величиной clip_image429 в виду ее малости по сравнению с другими членами уравнения и обозначая разность высот clip_image431, получим уравнение Бернулли в виде:

clip_image433 где clip_image435- скорость движения жидкости в трубопроводе; clip_image437- абсолютные значения

clip_image439

Начальный искомый напор равен сумме clip_image441

По заданному расходу, характеристикам жидкости (р, η) и тру­бопровода (I, d, ∆) находят значения v и числа Re, а также значение относительной шероховатости ∆/d , определяют режим течения, об­ласть течения и выбирают соответствующую формулу для вычисле­ния коэффициента гидравлического сопротивления.

Аналогично решается задача, когда происходит перетекание жидкости из одного резервуара в другой (рис. 6.2, б). Для опреде­ления необходимого напора составляется уравнение Бернулли для сечений 1—1 и 2—2 на поверхностях жидкости в резервуарах. Получаем

clip_image443Необходимый напор в начале трубопровода равен clip_image441[1]

Во многих случаях источником энергии для перекачки жидкости является насос. Для определения необходимого напора, создаваемо­го насосом в начале нагнетательной линии (рис. 6.2, в), составляется уравнение Бернулли для сечений 1—1 в начале этой линии и для се­чения 2—2 на свободной поверхности жидкости в резервуаре. При­нимая плоскость сравнения, проходящую через центр первого сечения, получаем clip_image445

Из этого выражения может быть найдено давление clip_image184[2], которое должен создавать насос. По найденному давлению и требуемому рас­ходу можно выбрать соответствующий насос для перекачки жидко­сти. Следует отметить, что в большинстве случаев скоростным напором можно пренебречь ввиду его малости по сравнению с други­ми членами уравнения Бернулли.

Задача вторая.

Определение расхода жидкости заданных при ос­тальных параметрах перекачки жидкости по трубопроводу. Рассмот­рим схему подачи жидкости (см. рис. 6.2, а) в трубопровод из напорной емкости. Необходимо определить расход жидкости, что равносильно нахождению скорости движения жидкости в трубопро­воде, которая входит в уравнение Бернулли.

Составим уравнение Бернулли для сечений 1 - 1 и 2—2, пренеб­регая скоростными напорами:

clip_image448

В этой формуле левая часть может быть определена по известным данным задачи. Значение скорости, а значит и расход можно было бы найти, если есть возможность найти члены, входящие в скобки выра­жения (6.3). В общем случае при режимах течения, отличающихся от квадратичного, коэффициенты гидравлического сопротивления λ и местного сопротивления ζ зависят от числа Re, а значит и от ν, а вид этой зависимости заранее неизвестен. Возможны два способа реше­ния такого типа задач: аналитический и графоаналитический.

Аналитически задача может быть решена в тех случаях, когда до начала расчета можно предсказать режим течения, а значит и вид за­висимости λ от Re. Так, если предположить, что режим течения будет ламинарным, то коэффициент гидравлического сопротивления оп­ределится по формуле λ = 64/Re, а значения ζ находят по справочни­ку. После подготовки значений этих коэффициентов в уравнение (6.3) находят скорость v, а затем расход. Аналогично решается зада­ча, если предполагаемый режим является квадратичным. В каждом из этих случаев требуется проверка предполагаемого режима тече­ния, т.е. необходимо, чтобы при ламинарном течении Re 500 d/∆

Если предположение не подтвердилось, то задачу решают мето­дом последовательных приближений, задавая в первом приближе­нии значение расхода clip_image450, находят величину потерь clip_image452 и сравнива­ют с потерями напора для заданного трубопровода, равными

clip_image454

Если полученное значение clip_image452[1] оказалось больше чем clip_image457, то расход уменьшают, а если меньше то следующее зна­чение clip_image450[1], увеличивают, последовательно приближая получаемое значение clip_image452[2] к вычисленному clip_image457[1].

Графоаналитический метод требует построения характеристики трубопровода Q-h (зависимости потерь напора от расхода) с помощью, которой определяют расход clip_image461

clip_image463clip_image465Для построения характеристики трубопровода сдаются рядом про­извольных значений расхода жидкости clip_image467 и по ним опре­деляются потери напора clip_image469 в трубопроводе, как было изложено в первой задаче. Затем по выбранным расходам и соответствующим им поте­рям напора строим график зависимости Q-clip_image471 для данного трубопровода (рис. 6.3). Для найденных потерь clip_image457[2] по графику определяем соответствую­щий им расход жидкости clip_image461[1]. При реше­нии задачи методом последовательных приближений или графоаналитиче­ским требуется большое число вычис­лений, что наиболее рационально проводить с использованием ЭВМ.

Задача третья.

Определение мини­мально необходимого диаметра трубо­провода для обеспечения заданного рас­хода Q при известном напоре в трубоп­роводе clip_image457[3]. Эта задача может быть решена, как и в предыдущем случае ана­литически, методом последовательных приближений или графоаналитически.

clip_image477

В последних двух случаях задаются рядом значений диаметров clip_image473 и, зная Q, вычисляют потери напора clip_image475. В методе последовательных приближений срав­нивают получаемые значения потерь напора с заданными по условию задачи,

добиваясь их близкого совпадения.

В графоаналитическом методе строится зависимость потерь напора от диаметра (рис. 6.4), а затем отложив по оси ординат предварительно вычисленные потери напора clip_image454[1]на оси абсцисс нахо­дят минимально необходимый диаметр clip_image479. Если диаметр, определен­ный с этого графика, отсутствует в сортаменте, то берется ближайший большой диаметр.

Рассмотрим случай последовательного соединения труб. Если трубопровод состоит из нескольких последовательно соединенных участков труб различного диаметра и различной длины (рис. 6.5), то задачи решаются изложенными способами. При этом полные потери напора на всем протяжении трубопровода определяются как сумма потерь на трение на отдельных участках и местных сопротивлений:

clip_image481, а расход жидкости на каждом из участков одинаков clip_image483

Равенство (6.4) выражает собой принцип наложения потерь (принцип суперпозиции).

Принцип наложения может быть использован лишь в том случае, если расстояние между имеющимися местными сопротивлениями достаточно больше. Как показали опыты, если clip_image485, где L – расстояние между местными сопротивлениями, d – диаметр трубопровода, то взаимное влияние местных сопротивлений мало и в этом случае можно воспользоваться соотношением: clip_image481[1]

Если требуется найти расход в последовательно соединенном трубопроводе при задаваемых значениях clip_image487напора, то в качестве расчетного служит по-прежнему соотношение: clip_image481[2].

Если при этом заранее не известны коэффициенты λ и ζ, зависящие от расхода, то — так же как в случае простого трубопровода — эту задачу надо решать ме­тодом последовательных приближений или графоа­налитическим способом. С этой целью при нескольких значениях расхода, задавае­мых произвольно, строим гидравлическую характери­стику для каждого участка, и совмещаем графики на одном чертеже (строим совме­стную характеристику), как это показано на схеме (рис. 6.6) для тру­бопровода, состоящего из двух участков I и II; при этом для получе­ния точек совместной характеристики для каждого значения расхода Q суммируются соответствующие ему значения потерь напора h на каждом из участков. Таким образом, расстояние от оси абсцисс до са­мой верхней кривой равняется сумме потерь на всей длине трубопрово­да и поскольку располагаемая величина напора clip_image457[4] известна — из графика можно определить соответствующий этому напору расход clip_image461[2].

Last Updated on Saturday, 08 November 2014 16:47