Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Ответы к экзаменам по курсу гидравлика - Коэффициент гидравлического сопротивления при турбулентном течении

Cмотрите так же...
Ответы к экзаменам по курсу гидравлика
Гипотеза сплошности
Давление: абсолютное, избыточное, вакуумное
Плотность
Уравнение состояния
Коэффициенты сжимаемости
Равновесие несжимаемой жидкости в поле силы тяжести
Свойства гидростатического давления
Основное уравнение гидростатики для капельных жидкостей и газов
Примеры применения основных уравнений гидростатики
Единицы измерения давления
Понятие центра давления
Основные задачи и методы гидродинамики
Потоки напорный и безнапорный, гидравлические струи
Общие сведения о гидравлических сопротивлениях
Виды гидравлических сопротивлений
Связь между средней и осевой скоростями
Потери напора на трение по длине потока
Формула Пуазейля
Турбулентное движение жидкости
Коэффициент гидравлического сопротивления при турбулентном течении
Основные расчетные формулы
Определение и виды местных сопротивлений
Формула Вейсбаха
Эквивалентная длина
Типы трубопроводов
Особенности расчета трубопроводов, работающих под вакуумом
Расчет трубопровода из труб с переменным сечением
Истечение жидкости из отверстий и насадков
Коэффициенты сжатия, скорости и расхода
Потери в отверстиях и насадках
Гидравлический удар в трубах
All Pages

Коэффициент гидравлического сопротивления при турбулентном течении. Графики Никурадзе и Мурина.

Основной расчетной формулой для потерь напора при турбулентном течении жидкости в круглых трубах является эмпирическая формула, называемая формулой Вейсбаха-Дарси и имеющая следующий вид: clip_image328

Различие заключается лишь в значениях коэффициента гидравлического трения λ. Этот коэффициент зависит от числа Рейнольдса Re и от безразмерного геометрического фактора - относительной шероховатости Δ/d (или Δ/r0, где r0 - радиус трубы).

clip_image330

Первые систематические опыты для выявления влияния различ­ных параметров на величину λ были проведены Никурадзе под руко­водством Прандтля в 20-х годах XX века в Германии.

Эти опыты проводились в латунных трубах, глад­ких, что достигалось шлифовкой и с искусственной однородной ше­роховатостью, которая создавалась наклеиванием зерен песка определенного размера на внутреннюю поверхность труб. В трубах с полученной таким образом определенной шероховатостью при раз­ных расходах измерялась потеря напора и вычислялся коэффициент λ, значения которого наносились на график в функции числа Рейнольдса. Результаты опытов Никурадзе представлены графически на рис. 4.11 На этом графике по горизонтальной оси отложены величи­ны lgRe, а по вертикальной оси — lg(l00 λ). Кривые построены по данным опытов с трубами относительной шероховатости от ε=∆/d= 0,001 (самая нижняя кривая) до ε=0,033 (самая верхняя кривая).

Анализируя представленный график, можно сделать следу­ющие выводы:

Существуют четыре различные области.

Область ламинарного режима (I). В области ламинарного режи­ма (т.е. при Re < 2300, чему соответствует lg Re < 3,36) опытные точ­ки, независимо от шероховатости стенок, уложились на одну прямую линию I. Следовательно, здесь λ зависит только от числа Рейнольдса и не зависит от шероховатости, т.е. λ=f (Re).

Остальные участки кривых (II, III, IV) относятся к турбулентно­му движению.

В области перехода от ламинарного движения к турбулентному Re = 2000-4000 (3,3< lgRe< 3,6) наблюдается большой разброс опытных точек и кривая между I и II па рис. 4.11 проведена условно.

Область гидравлически гладких труб (II). В этой области опыт­ные точки для труб с различной шероховатостью располагаются в не­котором диапазоне чисел Re на одной прямой II, отрываясь от нее в сторону возрастания коэффициента λ тем раньше, чем больше шероховатость стенок. Таким образом, при некоторых условиях шерохо­ватость не оказывает влияния на потери напора также и при турбулентном движении, т.е. и здесь λ =f(Re). Область смешанного трения (III). Здесь каждая кривая относится к определенному значению относительной шероховатости и величина также меняется с изменением числа Рейнольдса, т.е. коэф­фициент гидравлического сопротивления зависит как от числа Re, так и от ε(λ =f(Re,ε))

Область «вполне шероховатых труб» (IV), При увеличении числа Re кривые области IIIпереходят в линии, параллельные оси lg Re, т,е. коэффициентλв этой области не зависит от числа Re и оп­ределяется только относительной шероховатостью. Полуэмпиричекая теория турбулентности позволяет предложить выражение для коэффициента λ, исходя из распределения скорости в живых сечени­ях потока.

Можно вывести следующие полуэмпирические формулы Прандтля-Никурадзе из логарифмического закона распределения скоростей

Для гладких труб - clip_image332

Для вполне шероховатых труб clip_image334

Предложенная полуэмпирическая теория не отражает особенностей сопротивления в области смешанного трения.

clip_image336

Опыты Никурадзе проводились в трубах с одной искусственной шероховатостью. Трубы же, применяемые на практике, имеют шероховатость неоднородную и неравномерную. Поэтому долгое время оставалось неясным, насколько правильны будут выводы, полученные Никурадзе на трубах с искусственной шероховатостью, в применении к обычным промышленным трубам с естественной шероховатостью и каковы численные значения ше­роховатости для подобных труб, Выяснению этих вопросов был по­священ ряд проведенных экспе­риментальных исследований (работы Кольбрука, И.А.Исаева, ГА.Мурина, ФА Шевелева).

Наибольший интерес представляют опыты ГА.Мурина по исследованию гидравлических сопротивлений в обычных промышленных стальных трубах, законченные в 1948 г. Результаты этих опытов представлены на графике, изображенномрис. 4,12, показывающем изменение коэффициента λ в зависимости от числа Рейнольдса для стальных труб.

Подтвердив основные закономерности, установленные Никурад­зе, эти опыты показали, что для труб с естественной шероховатостью коэффициент λ в пере­ходной области имеет всегда большие значения, чем в случае вполне шероховатых труб (а не меньше, как у Никурадзе), Поэтому кривые на диаграмме Мурина не имеют впадины, характерной для кривых Никурадзе.

Результаты обобщения большого числа опытов показали, что λявляется функцией двух безразмерных параметров числа Рейнольдса­, отражающего влияние вязкости и скорости движения жидкости и относительной шероховатости ε=∆/d, характеризующего влияние поверхности стенок, т.е.

λ=f(Re, ∆/d)

Last Updated on Saturday, 08 November 2014 16:47