Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Ответы к экзаменам по курсу гидравлика - Определение и виды местных сопротивлений

Cмотрите так же...
Ответы к экзаменам по курсу гидравлика
Гипотеза сплошности
Давление: абсолютное, избыточное, вакуумное
Плотность
Уравнение состояния
Коэффициенты сжимаемости
Равновесие несжимаемой жидкости в поле силы тяжести
Свойства гидростатического давления
Основное уравнение гидростатики для капельных жидкостей и газов
Примеры применения основных уравнений гидростатики
Единицы измерения давления
Понятие центра давления
Основные задачи и методы гидродинамики
Потоки напорный и безнапорный, гидравлические струи
Общие сведения о гидравлических сопротивлениях
Виды гидравлических сопротивлений
Связь между средней и осевой скоростями
Потери напора на трение по длине потока
Формула Пуазейля
Турбулентное движение жидкости
Коэффициент гидравлического сопротивления при турбулентном течении
Основные расчетные формулы
Определение и виды местных сопротивлений
Формула Вейсбаха
Эквивалентная длина
Типы трубопроводов
Особенности расчета трубопроводов, работающих под вакуумом
Расчет трубопровода из труб с переменным сечением
Истечение жидкости из отверстий и насадков
Коэффициенты сжатия, скорости и расхода
Потери в отверстиях и насадках
Гидравлический удар в трубах
All Pages

Определение и виды местных сопротивлений.

Простейшие местные сопротивления при турбулентном режиме течения в трубе.

1. Внезапное расширение потока. Потеря напора (энергии) при внезапном расширении русла расходуется на вихреобразование, связанное с отрывом потока от стенок, т.е. на поддержание вращательного непрерывного движения жидких масс с постоянным их обновлением.

clip_image355

Рис. 4.9. Внезапное расширение трубы

При внезапном расширении русла (трубы) (рис.4.9) поток срывается с угла и расширяется не внезапно, как русло, а постепенно, причем в кольцевом пространстве между потоком и стенкой трубы образуются вихри, которые и являются причиной потерь энергии. Рассмотрим два сечения потока: 1-1 - в плоскости расширения трубы и 2-2 - в том месте, где поток, расширившись, заполнил все сечение широкой трубы. Так как поток между рассматриваемыми сечениями расширяется, то скорость его уменьшается, а давление возрастает. Поэтому второй пьезометр показывает высоту на ΔH большую, чем первый; но если бы потерь напора в данном месте не было, то второй пьезометр показал бы высоту большую еще на hрасш. Эта высота и есть местная потеря напора на расширение, которая определяется по формуле: clip_image357где S1, S2 - площадь поперечных сечений 1-1 и 2-2. υ-скорость на известном участке трубопровода. Это выражение является следствием теоремы Борда.

Теорема Борда: потеря напора при внезапном расширении потока равна скоростному напору, определенному по разности скоростей clip_image359

Выражение ( 1 - S1/S2 )2 обозначается греческой буквой ζ (дзета) и называется коэффициентом местного сопротивления, таким образом clip_image361

2. Постепенное расширение русла. Постепенно расширяющаяся труба называется диффузором (рис.4.10). Течение скорости в диффузоре сопровождается ее уменьшением и увеличением давления, а следовательно, преобразованием кинетической энергии жидкости в энергию давления. В диффузоре, так же как и при внезапном расширении русла, происходит отрыв основного потока от стенки и вихреобразования. Интенсивность этих явлений возрастает с увеличением угла расширения диффузора α.

clip_image363

Рис. 4.10. Постепенное расширение трубы

Кроме того, в диффузоре имеются и обычные потери на терние, подобные тем, которые возникают в трубах постоянного сечения. Полную потерю напора в диффузоре рассматривают как сумму двух слагаемых:

clip_image364

где hтр и hрасш - потери напора на трение и расширение (вихреобразование).

clip_image365

где n = S2/S1 = ( r2/r1 ) 2 - степень расширения диффузора. Потеря напора на расширение hрасш имеет ту же самую природу, что и при внезапном расширении русла

clip_image366

где k - коэффициент смягчения, при α= 5…20°, k = sinα.

Учитывая это полную потерю напора можно переписать в виде:

clip_image367

откуда коэффициент сопротивления диффузора можно выразить формулой

clip_image368

clip_image369

Рис. 4.11. Зависимость ζдиф от угла

Функция ζ = f(α)имеет минимум при некотором наивыгоднейшем оптимальном значении угла α, оптимальное значение которого определится следующим выражением:

clip_image370

При подстановке в эту формулу λТ =0,015…0,025 и n = 2…4 получим αопт = 6 (рис.4.11).

3. Внезапное сужение русла. В этом случае потеря напора обусловлена трением потока при входе в более узкую трубу и потерями на вихреобразование, которые образуются в кольцевом пространстве вокруг суженой части потока (рис.4.12).

clip_image371

Рис. 4.12. Внезапное сужение трубы

4.13. Конфузор

Полная потеря напора определится по формуле ;

clip_image372

где коэффициент сопротивления сужения определяется по полуэмпирической формуле И.Е. Идельчика:

clip_image373

в которой n = S1/S2 - степень сужения.

При выходе трубы из резервуара больших размеров, когда можно считать, что S2/S1 = 0, а также при отсутствии закругления входного угла, коэффициент сопротивления   ζсуж = 0,5.

4. Постепенное сужение русла. Данное местное сопротивление представляет собой коническую сходящуюся трубу, которая называется конфузором (рис.4.13). Течение жидкости в конфузоре сопровождается увеличением скорости и падением давления. В конфузоре имеются лишь потери на трение

clip_image374

где коэффициент сопротивления конфузора определяется по формуле

clip_image375

в которой n = S1/S2 - степень сужения.

Небольшое вихреобразование и отрыв потока от стенки с одновременным сжатием потока возникает лишь на выходе из конфузора в месте соединения конической трубы с цилиндрической. Закруглением входного угла можно значительно уменьшить потерю напора при входе в трубу. Конфузор с плавно сопряженными цилиндрическими и коническими частями называется соплом (рис.4.14).

clip_image377

Рис. 4.14. Сопло

5. Внезапный поворот трубы (колено). Данный вид местного сопротивления (рис.4.15) вызывает значительные потери энергии, т.к. в нем происходят отрыв потока и вихреобразования, причем потери тем больше, чем больше угол δ. Потерю напора рассчитывают по формуле

clip_image378

где ζкол - коэффициент сопротивления колена круглого сечения, который определяется по графику в зависимости от угла колена δ (рис.4.16).

clip_image380

Рис. 4.15.

Рис. 4.16. Зависимости ζкол от угла δ

Рис. 4.17. Отвод

6. Постепенный поворот трубы (закругленное колено или отвод). Плавность поворота значительно уменьшает интенсивность вихреобразования, а следовательно, и сопротивление отвода по сравнению с коленом. Это уменьшение тем больше, чем больше относительный радиус кривизны отвода R / d рис.4.17). Коэффициент сопротивления отвода ζотв зависит от отношения R / d, угла δ, а также формы поперечного сечения трубы.

Для отводов круглого сечения с углом δ= 90 и R/d clip_image3811 при турбулентном течении можно воспользоваться эмпирической формулой:

clip_image382

Для углов δ clip_image38370° коэффициент сопротивления

clip_image384

а при δ clip_image381[1]100°

clip_image385

Потеря напора в колене определится как

clip_image386

Все выше изложенное относится к турбулентному движению жидкости. При ламинарном движении местные сопротивления играют малую роль при определении общего сопротивления трубопровода. Кроме этого закон сопротивления при ламинарном режиме является более сложным и исследован в меньшей степени.

Last Updated on Saturday, 08 November 2014 16:47