Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Ответы к экзаменам по курсу гидравлика - Эквивалентная длина

Cмотрите так же...
Ответы к экзаменам по курсу гидравлика
Гипотеза сплошности
Давление: абсолютное, избыточное, вакуумное
Плотность
Уравнение состояния
Коэффициенты сжимаемости
Равновесие несжимаемой жидкости в поле силы тяжести
Свойства гидростатического давления
Основное уравнение гидростатики для капельных жидкостей и газов
Примеры применения основных уравнений гидростатики
Единицы измерения давления
Понятие центра давления
Основные задачи и методы гидродинамики
Потоки напорный и безнапорный, гидравлические струи
Общие сведения о гидравлических сопротивлениях
Виды гидравлических сопротивлений
Связь между средней и осевой скоростями
Потери напора на трение по длине потока
Формула Пуазейля
Турбулентное движение жидкости
Коэффициент гидравлического сопротивления при турбулентном течении
Основные расчетные формулы
Определение и виды местных сопротивлений
Формула Вейсбаха
Эквивалентная длина
Типы трубопроводов
Особенности расчета трубопроводов, работающих под вакуумом
Расчет трубопровода из труб с переменным сечением
Истечение жидкости из отверстий и насадков
Коэффициенты сжатия, скорости и расхода
Потери в отверстиях и насадках
Гидравлический удар в трубах
All Pages

Эквивалентная длина

Иногда местные сопротивления выражают через эквивалентную длину прямого участка трубопровода . Эквивалентной длиной называют такую длину прямого участка трубопровода данного диаметра, потери напора в котором при пропуске данного расхода равны рассматриваемым местным потерям.

clip_image349[1], получаем clip_image404,или clip_image405.

Эта формула позволяет весьма просто оценивать роль потерь удельной энергии в местном сопротивлении по сравнению с потерями по длине в общем балансе потерь.

Взаимное влияние местных сопротивлений

Местные потери напора часто суммируют в соответствии с принципом наложения потерь, согласно которому полная потеря напора представляет собой арифметическую сумму потерь, вызываемых отдельными сопротивлениями. Принцип наложенния потерь дает надежные результаты лишь в случае, если расстояние между отдельными местными сопротивлениями достаточно велико для того, чтобы искажение эпюры скоростей, вызванное одним из них, не сказывалось на сопротивлении, лежащем ниже по сечению. Для этого необходимо, чтобы местные сопротивления отстояли друг от друга не ближе, чем

lвл/d=(12/√λ)-50

где lвл - длина влияния местного сопротивления;

λ — коэффициент гидравлического трения трубы, на которой расположено местное сопротивление.

Эта формула действительна для турбулентного движения.

При больших числах Рейнольдса в первом приближении

lвл/d≥ (30-40)d

При малых числах Рейнольдса (большие значения λ.) взаимное влияние местных сопротивлений проявляется слабее, длина влияния местного сопротивления имеет меньшую величину и приближенно может быть оценена по формуле

lвл/d =1.25√Re.

 

Гидравлический расчет трубопроводов.

Гидравлический расчеты трубопроводов, независимо от их вида, имеют целью установление зависимостей между количеством протекающей в них жидкости (расходом), распределением давления по длине трубопровода и геометрическими характеристиками (формой и размерами труб на отдельных участках трубопроводной сети). Исходными при этих расчетах является уравнение Бернулли и уравнения сохранения расхода: первое является динамическим, а второе – кинематическим.

В соответствии с уравнением Бернулли разность полных напоров clip_image407в начальном, и clip_image188[1]в конечном сечениях трубопровода, или некоторого его участка, равняется напору, который затрачивается на преодоление гидравлических сопротивлений clip_image410 Причем clip_image412, где clip_image232[1]- потери напора по длине, clip_image415- местные потери напора на гидравлические сопротивления.

Потери напора по длине трубопровода определяются для круглых труб из формулы Дарси-Вейсбаха. clip_image417, а для некруглых – из выражения - clip_image419

Местные потери напора определяются clip_image421, значения коэф. clip_image423 приведены в специальной литературе.

Last Updated on Saturday, 08 November 2014 16:47