Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по теории вероятности

Cмотрите так же...
Шпаргалки по теории вероятности
Геометрическая вероятность. Задача о встрече
Теоремы сложения вероятностей
Теоремы умножения вероятностей
Формула полной вероятности
Формула Бейеса
Повторение испытаний. Частная теорема о повторении опыта.
Функция распределения случайной величины
Плотность распределения
Числовые характеристики случайных величин
Неравенство Чебышева
Характеристические функции
Следствие из теоремы Ляпунова-теоремы Лапласа
Свойства числовых характеристик
Нормальное распределение
Правило трех сигма
Равномерное распределение
Закон Пуассона
Функция одного случайного аргумента
Функция двух случайных аргументов
Статистическое распределение выборки
Критерии согласия(критерии Пирсона)
Функция распределения системы двух случайных величин
Условные законы распределения
Зависимые и независимые случайные величины
Метод наименьших квадратов
All Pages

Основные понятия теории вероятности.

 

Теория вероятности есть наука, изучающая закономерности случайных явлений.

Случайное явление – это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает каждый раз по-разному.

В природе нет ни одного физического явления, в котором бы не присутствовали элементы случайностей. Факторы, влияющие на случайности, являются случайными и второстепенными.

Под событием в теории вероятности понимается всякий факт, который в результате опыта может произойти или не произойти. Если количественно сравнивать между собой события по степени их возможности, нужно с каждым событием связать число, которое тем больше, чем более возможно событие. Такое число называется вероятностью Р.

Для достоверного события Р=1, для невозможного события Р=0. Несколько событий в данном опыте называются равновозможными, если появление одного из них не более возможно, чем другого Непосредственный подсчет вероятности.

Для того, чтобы определить в опыте вероятность непосредственно из условий самого опыта, необходимо, чтобы различные исходы опыта обладали симметрией, и в силу этого были объективно одинаково возможны.

Несколько событий в одном опыте образуют полную группу событий, если в результате опыта непременно должно появиться хотя бы одно из них.

Несколько событий называются несовместными в данном опыте, если никакие 2 из них не могут появляться вместе.

Несколько событий в данном опыте называются равновозможными, если по условию симметрии есть основания считать, что ни одно из этих событий не является объективно более возможным, чем другие.

Существуют группы событий, обладающих всеми 3мя свойствами. Такие события называются случаями, и решение такой задачи называется схемой случаев или схемой урн. Классическая формула вероятности решает задачи, попадающие под схему урн.

Случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем неизвестно заранее, какое именно.

Случайные величины, которые принимают только отдельные друг от друга значения, называются дискретными.

Случайные величины, всевозможные значения которых заполняют собой некоторый промежуток, называются непрерывными.

Суммой 2х событий А и В называют событие С, состоящее в выполнении или события А, или события В, или 2х одновременно.

clip_image002

Произведением 2х событий А и В называется событие С, состоящее в совместном появлении событий А и В.

clip_image004

 

 

Классическое определение вероятности.

Если n-общее число элементарных событий и все они равновозможные, то вероятность события А:

clip_image006,

 

 где mA- число исходов, благоприятствующих появлению события А.

Классическая формула вероятности решает задачи, попадающие под схему урн.

 

Частота или статистическая вероятность.

Частота – отношение числа появлений нужного события к общему числу опытов.

р=0 – для невозможных событий и р=1 для достоверных событий.

Частоту событий называют статистической вероятностью, и про нее говорят, что при увеличении количества опытов частота сходится по вероятности увеличения Р.

 

 

 

 

Last Updated on Sunday, 24 January 2016 05:30