Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по теории вероятности - Зависимые и независимые случайные величины

Cмотрите так же...
Шпаргалки по теории вероятности
Геометрическая вероятность. Задача о встрече
Теоремы сложения вероятностей
Теоремы умножения вероятностей
Формула полной вероятности
Формула Бейеса
Повторение испытаний. Частная теорема о повторении опыта.
Функция распределения случайной величины
Плотность распределения
Числовые характеристики случайных величин
Неравенство Чебышева
Характеристические функции
Следствие из теоремы Ляпунова-теоремы Лапласа
Свойства числовых характеристик
Нормальное распределение
Правило трех сигма
Равномерное распределение
Закон Пуассона
Функция одного случайного аргумента
Функция двух случайных аргументов
Статистическое распределение выборки
Критерии согласия(критерии Пирсона)
Функция распределения системы двух случайных величин
Условные законы распределения
Зависимые и независимые случайные величины
Метод наименьших квадратов
All Pages

Зависимые и независимые случайные величины.

2 случ величины называются независимыми, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина.

Следовательно, условные распределения независимых величин равны их безусловным распределениям.

Теорема: Для того, чтобы случайные величины X и Y были независимыми, необходимо и достаточно, чтобы функция распределения системы (X, Y) была равна произведению функций распределения составляющих:

F(x, y)=F1(x)F2(y)

Доказательство: а) необходимость. Пусть X, Y –независимы, тогда X<x, Y<y тоже независимы и P(X<x, Y<y)=P(X<x)P(Y<y); F(x,y)=F1(x)F2(y).

б) Достаточность: Пусть F(x, y)=F1(x)F2(y) => P(X<x, Y<y)=P(X<x)P(Y<y) => X, Y- независимы.

Следствие: Для того, чтобы непрерывные случайные величины X и Y были независимыми, необходимо и достаточно, чтобы плотность совместного распределения системы (X, Y) была равна произведению плотностей распределения составляющих:

f(x, y)=f1(x)f2(y)

Доказательство: а) необходимость. Пусть X и Y – независимые непрерывные случайные величины. Тогда F(x,y)=F1(x)F2(y). Дифференцируя это равенство по x, затем по y, имеем:

clip_image213 или f(x, y)=f1(x)f2(y).

б) достаточность: Пусть f(x, y)=f1(x)f2(y). Интегрируя по х, затем по у, получим

clip_image215 или F(x,y)=F1(x)F2(y). => X, Y – независимы.

 

Last Updated on Sunday, 24 January 2016 05:30