Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по теории вероятности - Метод наименьших квадратов

Cмотрите так же...
Шпаргалки по теории вероятности
Геометрическая вероятность. Задача о встрече
Теоремы сложения вероятностей
Теоремы умножения вероятностей
Формула полной вероятности
Формула Бейеса
Повторение испытаний. Частная теорема о повторении опыта.
Функция распределения случайной величины
Плотность распределения
Числовые характеристики случайных величин
Неравенство Чебышева
Характеристические функции
Следствие из теоремы Ляпунова-теоремы Лапласа
Свойства числовых характеристик
Нормальное распределение
Правило трех сигма
Равномерное распределение
Закон Пуассона
Функция одного случайного аргумента
Функция двух случайных аргументов
Статистическое распределение выборки
Критерии согласия(критерии Пирсона)
Функция распределения системы двух случайных величин
Условные законы распределения
Зависимые и независимые случайные величины
Метод наименьших квадратов
All Pages

Метод наименьших квадратов.

Метод наименьших квадратов (МНК) - метод оценки параметров модели на основании экспериментальных данных, содержащих случайные ошибки. В основе метода лежат следующие рассуждения: при замене точного (неизвестного) параметра модели приблизительным значением необходимо минимизировать разницу между экспериментальными данными и теоретическими (вычисленными при помощи предложенной модели). Это позволяет рассчитать параметры модели с помощью МНК с минимальной погрешностью.

 

Мерой разницы в методе наименьших квадратов служит сумма квадратов отклонений действительных (экспериментальных) значений от теоретических. Выбираются такие значения параметров модели, при которых сумма квадратов разностей будет наименьшей – отсюда название метода:

 

 clip_image217 = min

 

где Y – теоретическое значение измеряемой величины, y – экспериментальное.

 

При этом полученные с помощью МНК параметры модели являются наиболее вероятными.

 

Метод наименьших квадратов, а также его различные модификации (нелинейный МНК, взвешенный МНК и т.д.) широко используется в аналитической химии, в частности, при построении градуировочной модели. Как правило, предполагается линейная зависимость (параметры которой требуется установить) между аналитическим сигналом и содержанием определяемого вещества. В этом случае метод наименьших квадратов позволяет оптимизировать параметры градуировки (и получить наименьшую погрешность анализа), а сумма квадратов разностей теоретического и экспериментального значения аналитического сигнала является мерой погрешности градуировки и линейно связана с так называемой остаточной дисперсией (дисперсией адекватности модели)

Last Updated on Sunday, 24 January 2016 05:30