Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по теории вероятности - Повторение испытаний. Частная теорема о повторении опыта.

Cмотрите так же...
Шпаргалки по теории вероятности
Геометрическая вероятность. Задача о встрече
Теоремы сложения вероятностей
Теоремы умножения вероятностей
Формула полной вероятности
Формула Бейеса
Повторение испытаний. Частная теорема о повторении опыта.
Функция распределения случайной величины
Плотность распределения
Числовые характеристики случайных величин
Неравенство Чебышева
Характеристические функции
Следствие из теоремы Ляпунова-теоремы Лапласа
Свойства числовых характеристик
Нормальное распределение
Правило трех сигма
Равномерное распределение
Закон Пуассона
Функция одного случайного аргумента
Функция двух случайных аргументов
Статистическое распределение выборки
Критерии согласия(критерии Пирсона)
Функция распределения системы двух случайных величин
Условные законы распределения
Зависимые и независимые случайные величины
Метод наименьших квадратов
All Pages

Повторение испытаний. Частная теорема о повторении опыта.

 

На практике часто прилагаются задачи, в которых один и тот же опыт повторяется неоднократно., причем нас интересует не отдельное, а общее число появлений события А в серии опытов. Предположим, что опыты являются независимыми величинами. Независимые опыты могут проводиться в одинаковых или разных условиях. При одинаковых условиях вероятность события А будет одинаковой и к нему относится частная теорема. Если опыты разные, то к нему относится общая теорема о повторении опытов.

Частная теорема:

Вероятность одного сложного события, состоящего в том, что в n испытаниях событие A наступит ровно k раз и не наступит n-k раз, по теореме умножения вероятностей независимых событий равна clip_image032.Таких сложных событий может быть столько, сколько можно составить сочетаний из n элементов по k элементов, т.е. clip_image034. Т.к. эти сложные события несовместны, то по теореме сложения вероятностей несовместных событий искомая вероятность равно сумме вероятностей всех возможных сложных событий. Поскольку вероятности всех этих сложных событий одинаковы, то искомая вероятность равна вероятности одного сложного события, умноженной на их число:

clip_image036. Эта формула называется формулой Бернулли.

Определение вероятностей по формуле Бернулли усложняется при больших значениях n и при малых p или q. В этом случае удобнее использовать приближенные асимптотические формулы. Если clip_image038, а clip_image040, но clip_image042, то в этом случае

clip_image044

Эта формула определяется теоремой Пуассона. Если в схеме Бернулли количество опытов n достаточно велико clip_image046, а вероятность р события А в каждом опыте постоянно, то вероятность clip_image048 может определяться по приближенной формуле Муавра-Лапласа:

clip_image050,

где clip_image052;

clip_image054 - локальная функция Лапласа, которая табулирована и приводится в справочниках. Данная формула отражает, так называемую, локальную теорему Муавра-Лапласа.

 

 

Вероятность появления события А не менее m раз при n опытах вычисляется по формуле:

                             clip_image056

 

 

Вероятность появления события А хотя бы один раз при n опытах

                                clip_image058

Наивероятнейшее число clip_image060 наступление события А в n опытах, в каждом из которых оно может наступить с вероятностью p (и не наступить с вероятностью q=1-p), определяется из двойного неравенства

                                    clip_image062

Если событие А в каждом опыте может наступить с вероятностью p, то количество n опытов, которое необходимо произвести для того, чтобы с заданной вероятностью Рзад. можно было утверждать, что данное событие А произойдет по крайней мере один раз, находится по формуле:

                            clip_image064

 

Частная теорема о повторении опытов касается того случая, когда вероятность события А во всех опытах одна и та же.

 

Общая теорема о повторении опытов. Производящая функция.

Если производятся n независимых опытов в различных условиях, причем вероятность появления события А в i-м опыте равна clip_image066 то вероятность Рclip_image068 того, что событие А в n опытах появится m раз, равна коэффициенту при Zclip_image070 в разложении по степеням Z производящей функции clip_image072 где clip_image074

 

 

Last Updated on Sunday, 24 January 2016 05:30