Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по теории вероятности - Критерии согласия(критерии Пирсона)

Cмотрите так же...
Шпаргалки по теории вероятности
Геометрическая вероятность. Задача о встрече
Теоремы сложения вероятностей
Теоремы умножения вероятностей
Формула полной вероятности
Формула Бейеса
Повторение испытаний. Частная теорема о повторении опыта.
Функция распределения случайной величины
Плотность распределения
Числовые характеристики случайных величин
Неравенство Чебышева
Характеристические функции
Следствие из теоремы Ляпунова-теоремы Лапласа
Свойства числовых характеристик
Нормальное распределение
Правило трех сигма
Равномерное распределение
Закон Пуассона
Функция одного случайного аргумента
Функция двух случайных аргументов
Статистическое распределение выборки
Критерии согласия(критерии Пирсона)
Функция распределения системы двух случайных величин
Условные законы распределения
Зависимые и независимые случайные величины
Метод наименьших квадратов
All Pages

Критерии согласия(критерии Пирсона).

Допустим, что данное статистическое распределение выровнено с помощью некоторой теоретической кривой. Как бы хорошо ни была подобрана теоретическая кривая, между ней и мтатистич. распределением неизбежны некоторые расхождения. Критерий согласия отвечает на вопрос, объясняются ли эти  расхождения ошибками измерения или расхождение явл. существенным и подобранная нами кривая плохо выравнивает статистическое распределение.

Выдвигается гипотеза Н, состоящая в том, что случ величина X подчиняется данному закону распределения. Для того, чтобы принять или опровергнуть гипотезу Н, рассматривают некоторую величину Н, характеризующую степень расхождения теоретического и статистического распределений.

В зависимости от выбора величины Н существует несколько критериев согласия. Используем для доказательства критерий χ² или критерий Пирсона.

Предположим, что произведено m независимых опытов, в каждом из которых случ величина Х приняла некоторое значение. Результаты записываются в виде статистического ряда. Для теоретического значения распределения можно найти теоретическую вероятность попадания случ величины в каждый интервал. Проверим согласованность теоретического и статистического распределений: выберем в качестве меры расхождения сумму квадратов отклонения, взятых с некоторым коэффициентом Сi.

clip_image201

 

Коэффициент Сi вводится, потому что в общем случае отклонения, относящиеся к различным разрядам нельзя считать равноправными.

Пирсон полагает, что если в качестве веса взятьCi=n/pi, то при больших значениях n распределение величины U обладает следующими свойствами: оно практически не зависит от ф-ии распределения, а зависит только от числа разрядов.

Распределение χ² зависит от параметра r, называемым числом степеней свободы, с увеличением которого распределение медленно приближается к нормальному.

После расчета χ² для статистического распределения по расчетным таблицам находим значение χ-критическое. Если χ² -критическое > χ² -наблюдаемого – нет оснований опровергать гипотезуH.

 

Last Updated on Sunday, 24 January 2016 05:30