Статистическое распределение выборки. Эмпирическая функция распределения. Полигон и гистограмма.
Пусть для изучения количественного признака Х из генеральной совокупности извлечена выборка x1…xk объема n. Наблюдавшиеся значения xi признака X называют вариантами, а последовательность вариант, записанных в возрастающем порядке, - вариационным рядом.
Статистическим распределением выборки называют перечень вариант xi вариационного ряда и соответствующих им частот ni (сумма всех частот равна n) или относительных частот wi(сумма = 1).
Статистическое распределение выборки можно задать также в виде последовательности интервалов и соответствующих им частот.
Эмпирической функцией распределения – называют функцию F*(x), определяющую для каждого значения х относительную частоту события X<x: F*(x)=nx/n, где nx – число вариант, меньших х, n- объем выборки. Эмпирическая функция обладает следующими свойствами:
1. Значения эмпирической функции принадлежат отрезку [0;1].
2. F*(x) – неубывающая функция.
3. Если x1 – наименьшая варианта, а xk – наибольшая, то F*(x)=0 при x≤x1 и F*(x)=1 при x≥xk.
А. Дискретное распределение признака X. Полигоном частот называют ломанную, отрезки которой соединяют точки (x1,n1)…(xk,nk), где xi – варианты выборки и ni – соответствующие им частоты.
Полигоном относительных частот называют ломанную, отрезки которой соединяют точки (xk,wk), где xk – варианты выборки, а wk- соответствующие им относительные частоты.
Б. Непрерывное распределение признака X. При непрерывном распределении признака весь интервал, в котором заключены все наблюдаемые значения признака, разбивают на ряд частичных интервалов длины h, и находят ni – сумму частот вариант, попавших в i-тый интервал. Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длины h, а высоты равны соотношению ni/h. Площадь прямоугольника равна h(ni/h)=ni – сумме частот вариант, попавших в интервал. Площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.
Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длины h, а высоты равны соотношению wi/h. Площадь прямоугольника равна соответствующей относительной частоте, а площадь гистограммы = 1.
Числовые характеристики статистического распределения