Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по теории вероятности - Свойства числовых характеристик

Cмотрите так же...
Шпаргалки по теории вероятности
Геометрическая вероятность. Задача о встрече
Теоремы сложения вероятностей
Теоремы умножения вероятностей
Формула полной вероятности
Формула Бейеса
Повторение испытаний. Частная теорема о повторении опыта.
Функция распределения случайной величины
Плотность распределения
Числовые характеристики случайных величин
Неравенство Чебышева
Характеристические функции
Следствие из теоремы Ляпунова-теоремы Лапласа
Свойства числовых характеристик
Нормальное распределение
Правило трех сигма
Равномерное распределение
Закон Пуассона
Функция одного случайного аргумента
Функция двух случайных аргументов
Статистическое распределение выборки
Критерии согласия(критерии Пирсона)
Функция распределения системы двух случайных величин
Условные законы распределения
Зависимые и независимые случайные величины
Метод наименьших квадратов
All Pages

Свойства числовых характеристик(мат ожидание, дисперсия).

Мат ожидание:

1.       Математическое ожидание постоянной величины равно самой постоянной:

M(C)=C

Д-во: Будем рассматривать постоянную С как дискретную случайную величину, которая имеет одно возможное значения С и принимает его с вероятностью р=1. М(С)=С*1=С.

2.        Постоянный множитель можно выносить за знак математического ожидания: М(СХ)=СМ(Х)

 Д-во: Пусть случайная величина Х задана законом распределения вероятностей:

Х

x1

x2

xn

p

p1

p2

pn

 или

СХ

Сx1

Сx2

Сxn

p

p1

p2

pn

 

Математическое ожидание случ. величины СХ:

 M(CX)=Cx1p1+Cx2p2+…Cxnpn=C(x1p1+x2p2+…xnpn)=CM(X) => M(CX)=CM(X).

3.       Математическое ожидание произведения двух независимых случ. величин равно произведению их мат ожиданий. M(XY)=M(X)M(Y)

Д-во: Пусть независимы случайные величины Х и Y заданы своими законами распределения вероятностей:

 

 

X

x1y1

Y

y1y2

p

p1p2

g

g1g2

 

Составив все значения, которые может принимать случ. величина XY, напишем закон распределения XY.

 

ХY

x1y1

x2y1

x1y2

x2y2

p

p1g1

p2g1

p1g2

p2g2

Мат ожидание равно сумме произведений всех возможных значений на их вероятности:

M(XY)=x1y1*p1g1+x2y1*p2g1+x1y2*p1g2+x2y2*p2g2=y1g1(x1p1+x2p2)+y2g2(x1p1+x2p2)=

=(x1p1+x2p2)(y1g1+y2g2)=M(X)M(Y).

Следствие:

M(XYZ)=M(X)M(Z)M(Y)

4.       Мат ожидание суммы двух случ величин равно сумме мат ожиданий слагаемых:

M(X+Y)=M(X)+M(Y)

Д-во: Пусть случ величины X и Y заданы следующими законами распределения:

X

x1

x2

Y

y1

y2

p

p1

p2

g

g1

g2

 

Составим все возможные значения величины X+Y: x1+y1; x2+y1; x1+y2; x2+y2. Обозначим их вероятности соответственно p11, p12, p21 и p22. Мат ожидание X+Y равно:

M(X+Y)=(x1+y1)p11+(x1+y2)p12+(x2+y1)p21+(x2+y2)p22=x1(p11+p12)+x2(p21+p22)+

+y1(p11+p21)+y2(p12+p22).

p11+p12=p, т.к. Событие «Х примет значение х1» влечет за собой событие «Х+Y примет значения x1+y1 или x1+y2», вероятность которого равно p11+p12. Следовательно, p11+p12=p1.

Аналогично: p21+p22=p2; p11+p21=g1 и p12+p22=g2. Получим:

M(X+Y)=(x1p1+x2p2)+(y1g1+y2g2)=M(X)+M(Y)

Следствие:M(X+Y+Z)=M(X)+M(Y)+M(Z)

Дисперсия:

1.       D(C)=0;

Д-во: D(C)=M{[C-M(C)]²}=M[(C-C)²]=M(0)=0.

2.       D(CX)=C²D(X)

Д-во: D(CX)=M{[CX-M(CX)]²}= M{[CX-CM(X)]²}=M{C²[X-M(X)]²}=C²M{[X-M(X)]²}=C²D(X).

3.       D(X+Y) =D(X)+D(Y).

Д-во: D(X+Y) = M[(X+Y)²]-[M(X+Y)]²= M[X²+2XY++Y²]-[M(X)+M(Y)]²=M(X²)+2M(X)M(Y)+

+M(Y²)-M²(X)-2M(X)M(Y)-M²(Y)={ M(X²)-[M(X)]²}+{ M(Y²)-[M(Y)]²}=D(X)+D(Y).

Следствие 1: D(X+Y+Z)=D(X)+D(Y)+D(Z)

Следствие 2: D(C+X)=D(X)+D(C)=D(X)

4.       D(X-Y)=D(X)+D(Y)

Д-во: D(X-Y)=D(X)+D(-Y)=D(X)+(-1)²D(Y)=D(X)+D(Y)

 

Last Updated on Sunday, 24 January 2016 05:30