Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по теории вероятности - Теоремы сложения вероятностей

Cмотрите так же...
Шпаргалки по теории вероятности
Геометрическая вероятность. Задача о встрече
Теоремы сложения вероятностей
Теоремы умножения вероятностей
Формула полной вероятности
Формула Бейеса
Повторение испытаний. Частная теорема о повторении опыта.
Функция распределения случайной величины
Плотность распределения
Числовые характеристики случайных величин
Неравенство Чебышева
Характеристические функции
Следствие из теоремы Ляпунова-теоремы Лапласа
Свойства числовых характеристик
Нормальное распределение
Правило трех сигма
Равномерное распределение
Закон Пуассона
Функция одного случайного аргумента
Функция двух случайных аргументов
Статистическое распределение выборки
Критерии согласия(критерии Пирсона)
Функция распределения системы двух случайных величин
Условные законы распределения
Зависимые и независимые случайные величины
Метод наименьших квадратов
All Pages

Теоремы сложения вероятностей

 

Теорема: Вероятность суммы 2х несовместных событий равняется сумме их вероятностей.

Р(А+В)=Р(А)+Р(В)

Д-во:

Используем схему случаев, из которых m~A, k~B, P(A)=m/n, P(B)=k/n. Поскольку А и В несовместные, то получается, что

m+k=A+B

P(A+B)= (m+k)/n=m/n+k/n=P(A)+P(B )/

1.                       Если события А1…Аn образуют полную группу несовместных событий, то сумма их вероятностей = 1. Противоположными называются 2 несовместных события, которые образуют полную группу {0;P}

A=”0” – P

A=”P” – q

2.                       Сумма вероятностей события и его противоположности равняется 1

P(A)+P(-A)=1

p+q=1

3.                       Вероятность суммы 2х совместных событий А и В равняется сумме их вероятности без учета вероятности их совместного появления.

P(A+B)=P(A)+P(B)-P(AB)

 

 

Last Updated on Sunday, 24 January 2016 05:30