Шпаргалки к экзаменам и зачётам

студентам и школьникам

  • Increase font size
  • Default font size
  • Decrease font size

Шпаргалки по теории вероятности - Функция одного случайного аргумента

Cмотрите так же...
Шпаргалки по теории вероятности
Геометрическая вероятность. Задача о встрече
Теоремы сложения вероятностей
Теоремы умножения вероятностей
Формула полной вероятности
Формула Бейеса
Повторение испытаний. Частная теорема о повторении опыта.
Функция распределения случайной величины
Плотность распределения
Числовые характеристики случайных величин
Неравенство Чебышева
Характеристические функции
Следствие из теоремы Ляпунова-теоремы Лапласа
Свойства числовых характеристик
Нормальное распределение
Правило трех сигма
Равномерное распределение
Закон Пуассона
Функция одного случайного аргумента
Функция двух случайных аргументов
Статистическое распределение выборки
Критерии согласия(критерии Пирсона)
Функция распределения системы двух случайных величин
Условные законы распределения
Зависимые и независимые случайные величины
Метод наименьших квадратов
All Pages

Функция одного случайного аргумента

 

Если каждому возможному значению случайной величины Х соответствует одно возможное значение случайной величины Y, то Y называют функцией случайного аргумента X: Y=φ(X).

Рассмотрим случай, когда X- дискретная случ величина с возможными значениями x1…xn, вероятности которых p1…pn. Тогда Yтоже является дискретной случ величиной со всевозможными случ событиями: y=f(x1)…y=f(xn).

Т.к. событие «величина X примет значение xi» влечет за собой событие «величина Y примет значение f(xi)», то вероятности всевозможных значений Y соответственно равны p1…pn.

Мат ожидание случ величины будет рассчитываться: M(y)=M(f(x))=∑f(xi)pi.

При записи закона распределения вероятности y руководствуются следующими правилами:

1.    Если различным возможным значениям X соответствуют различные возможные значения Y, то вероятности соответствующих значений X и Y равны между собой: P(X=xi)=P(y=f(xi))=pi.

2.    Если различным возможным значениям Х соответствуют значения Y, среди которых есть равные между собой, то следует складывать вероятности повторяющихся значений Y.

Рассмотрим непрерывную случ величину Х, которая задана своей плотностью, если у=f(x) дифференцируемая монотонная функция, обратная функция которой x=φ(y), то плотность распределения случ величины y определяется след функцией: g(y)=f[φ(y)|φ’(y)].

Соответствующее мат ожидание: clip_image183

Если отыскание ф-ии g(y) является затрудненным, то можно исп. след формулу:

clip_image185.

clip_image187.

 

Last Updated on Sunday, 24 January 2016 05:30